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Abstract—In this paper, joint sensor synchronization and local-
ization using time-of-arrival measurements is studied. Inwireless
sensor networks, the accuracy of the clock synchronization

among nodes has a great impact on the performance of the

localization using time-based ranging methods. The clocksf
the anchor nodes are typically synchronized with each other
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problem at hand is not only to synchronize the clocks of the
source nodes but also to estimate their locations. Typicall
in asynchronous networks, the clocks at the source nodes
are first synchronized and then localization is performdd [5
[6]. However, this approach can lead to poor synchroniza-

while those of the source nodes must be synchronized with tion performance which dramatically impacts the localaat
the anchor nodes. Each source node has its own clock char-gccuracy. Due to a close relationship between synchroniza-

acterized by clock offset and clock skew. Synchronizationsithe
process of determining these clock parameters for the souec
node, while localization is the process of estimating its tmtion.
Generally, the estimation problem is broken down into two
subproblems, where the synchronization is first performed ad
then the source node is localized. However, in this paper, aint
synchronization and localization framework is consideredand
examined, as it is expected to provide better accuracy, esgally
in dynamic networks. The system model for joint synchronizéon
and localization is first introduced. The maximum likelihood
(ML) estimator is then derived which is shown to be highly
nonlinear and nonconvex. The ML estimator does not have a
closed-form solution and must be solved by computationally
complex and iterative algorithms. A novel linear estimator is
derived which has a closed-form solution with significantlylower
complexity. The performance of the proposed linear estimair is
evaluated through computer simulations. Results show thathe
proposed linear estimator outperforms the previously conslered
estimators, especially in low signal-to-noise ratios.

Index Terms—sensor localization and synchronization, maxi-
mum likelihood (ML), linear least squares (LLS).

|. INTRODUCTION

tion and localization, several studies have focused ont join
synchronization and localization where they are performed
simultaneously. It has been shown that joint synchrororati
and localization can provide significant improvements akier
two-step approach, especially in terms of localizatioruaacy
[71-9]-

The ML estimator is a popular estimator which provides
the optimal accuracy. However, its cost function is severel
nonlinear and nonconvex. Due to the nonlinear nature of the
cost function, the ML estimator does not have a closed-form
solution and can be solved approximately by iterative megho
which require an appropriate initialization [10], [11]. &h
performance of these iterative methods is highly dependent
on their initial point. An iterative method may converge
to a local minimum (or a saddle point) resulting in large
estimation errors. Convex relaxation techniques [12]}-fixl
linear estimators [15]-[17] have been introduced to deéth wi
this problem. In the former, the nonlinear and nonconvex
ML problem is relaxed into a convex optimization problem
such as semidefinite programming (SDP) or second order cone

Wireless sensor networks (WSNs) have been the subjeebgramming (SOCP) [7]. In the latter, the system model is
of much interest during the past decades, mainly becausearized and a linear least squares (LLS) estimator iieghp

of their wide civilian, commercial, and military applicatis.

The advantage of the linear estimators is that they havedios

Synchronization and localization are two of the main compésrm solutions. The downside of these techniques is that the
nents in WSNs. Node locations in the network are requiresle sub-optimal and good performance cannot be expected in
to make their information meaningful [1]. Localization isall situations.

typically performed by collecting measurements within the In this work, a linear estimator for joint sensor synchreniz
network without any aid of external resources such as tkien and localization in WSNs is studied. The system model

Global Positioning System (GPS) [2], [3]. Synchronizatisn

is first introduced and the corresponding ML estimator isithe

also required in WSNSs, since many operations such as pof@mulated. A novel linear estimator is derived by lineariz
management, data fusion, spectrum allocation, and edlgeciing the nonlinear system model to a linear one. Although

localization depend on it [4].

several linear estimators have been previously introddiced

Generally speaking, a WSN consists of a series of atiis problem in the literature, the proposed estimator has
chor nodes with known locations whose clocks are alsignificantly better accuracy in exchange for small comipfex
synchronized and a number of source nodes with unknogrowth. The Cramér-Rao lower bound (CRLB) is used as a
locations whose clocks must be synchronized. The lack loénchmark for comparisons. The performance of the proposed
synchronization among nodes in a WSN is mainly due to thaistimator is compared with those of the ML and other previ-

different clock parameters (clock offset and skew). Hetioe,

ously considered estimators through computer simulations



Notation. The following notation is used throughout the Anchor :
paper. Lowercase and uppercase letters denote scalasvalue 4 Nodei 2
Bold uppercase and bold lowercase letters denote matmces a o
vectors, respectivel\;; and0,; denote thel/ x M identity Tim, k/ gt‘;‘i Source
and theM x M zero matrices, respectively,, represents the < g‘l‘;‘ii
M x 1 vector of all ones]| - || denotes th&, norm and the
operator® denotes the element-wise produletl; and[A]; ;
denote theith element of vectoa and the element at thith
row and;jth column of matrixA, respectively.
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The internal clocks of the nodes are assumed to be imperfe tﬂr T Clock

which causes the internal time drift away from the reference’r"% L

time. The internal time is modeled as a function of the Real Time

reference as follows [4], [8], [9]

»

Fig. 1. The two-way message exchange between the sourceanddanchor
ti = wit +0; (1) node with different clock skews and clock offsets.

wheret; andt are the internal time of théth node and the the ith anchor node

reference time, respectively; is the clock skew accounting 1

for the different rates of change in the times at differentkk li = Edi

andé; represents thelock offset accounting for the difference

in clock readings between two clocks at the same moment in = E”X - il

time. Each node has a unique clock meaning that the clock 1 "

skew and offset are different for each node. = g\/(x —yi)t(x—yi) ®3)

Consider a network with\/ anchor nodes and One SOUrC§here is the propagation velocity. The terms,, and .,
node. Denote by € R?, w,, andf, the unknown coordinates, renresent measurement errors which are modeled as inde-
the clock skew, and the clock offset of the source node, ®spgendent and identically distributed (i.i.d.) Gaussiandem
tively. Denote byy; € R?, w;, andf; the known coordinates, ariaples with variance? anda?, respectively. The variances
the clock skew, and the clock offset of tite anchor node, re- of the measurements do not vary with time. However, they are

spectively. The synchronization and localization areqma_nied dependent on the received SNR and typically modeled as [18]
simultaneously meaning that the clock parameters anditocat

of the source nodes are jointly estimated from a series of 07 = pid),  G7= ppd] (4)

noisy timing synchronization measurements collected 'W'thwhereui andy., define the relationship between the noise vari-

the n_etwork. There are two common CIQCk synchromzaﬂoa{hce and the true distance and their values are dependent on
techniques in WSNs: one-way message dissemination and o

. > propagation environment and hardware implementations
way message exchanges. In the former, either the source noc%

. . : the path-loss exponent which typically varies between 2
E;‘]orwardhllnk)_ ort_the anchor no:ljel(b%ck:/v?trd lgnl?h tran;(rjmt ree space) and 4 (harsh environments) [19], [20]. Noteé tha
eﬁync r((j)mz? lon m_?ssagis[ ] rt' € 1atter, bo mh all four time stamps{T;,, Rim, Tim, Rim} are available to
anchor nodes transmit synchronization messages as show, o1 nodes which are used to estimate the location and
Fig. 1. Several rounds of messages are typically exchan

¥6ck parameters of the source node.
between the nodes to achieve higher accuracy. Atrittle P .
We assume that during rounds of message exchanges,

;g?v:/]:r dOfsimr?aSISZtgtehee);icmh:ns%Z’ the ﬁéﬂiﬁen:r?fhgragiggs tmeeclock parameters and location of the source node do not
9 TP change. To further simplify (2), thd rounds of message

receives the signal at the time starftp,,. The anchor node exchanades can be averaged as
then sends back a signal‘&f,, and the source node captures 9 9

the backward signal aR;,,. The time stampg},, and R;,, Ri= 2T 4 wi(t; +ni) — 220, + 6,
are reported based on the internal clock of the source node, B iw B ff
while R;,, andT;,, are reported based on the internal clock Ry = 2T + we(t; + 1y) — —0; + 6, (5)
of anchor node. The measured time stamps at the receivers Wi Wi
are modeled as [7], [8] where
w; wj L L
Rim = —Tim + wi(t; + nim) — — 05 + 6; _ 1 . _1 .
We ( ) Wy Tz - E Z szv R’L - E Z Rzm
= Wy = _ Wy m=1 m=1
Rim = —Tim + we(ti + Nim) — —0; + 0, (2) L L
» § = Y T R=p Y R ©
wheret; is the propagation time between the source node and ‘L — R — e



and n; and n; are i.i.d. Gaussian random variables witlthe proposed linear estimator, the system model needs to firs
variancec?/L and 52 /L, respectively. It can be seen fromlinearized in terms of the unknown variables. The optimarat

(5) that collecting more rounds of measurements decrehsesproblem is then formulated as a linear least squares (LLS)
effect of the measurement noise which leads to more accurpteblem which has a closed-form solution. Rearranging (7)

localization and synchronization performance. yields
[1l. M AXIMUM LIKELIHOOD ESTIMATOR §i—Tiffy =di —az +n;
Because of several attractive properties, the ML estimator i+ Riffy = di + 0 + 74 ©)

is a very popular estimator. An important property of th@here¢; = R;3; — o; and&; = a; — T;;. To eliminate the
ML estimator is that it is asymptotically optimal and it carjependency of (9) on the unknown variablg an anchor node
reach the CRLB when the number of measurements tengdselected as a reference and its measurements are sedbtract
to infinity [21, Ch. 7]. In other words, there is no unbiasegtom all other measurements. et {1,..., M} be the index

estimator that performs better than the ML estimator. Noi the reference anchor node apgdbe its location. Therefore,
that the CRLB expresses a lower bound on the variangs) s expressed as

of any unbiased estimator [21, Ch. 3]. The CRLB of the

proposed system model is derived in [7]. The ML estimator &ir — Tip e + dr = d;i + ngr

is obtained by maximizing the likelihood function over the Eir + Rip By + dp = di + iy (20)
unknown parameters. To make the expressions simpler, tw

new auxiliary variables are introduced and the model in ¢5) yhere

rewritten as Ty =1T; =T, [y =T, — T,
n; = Rifi —di — T;0z + ag — Ry = Ri—R., Ri=R;—R,
fi = Rifo — di = Tyfi — au + a (7) Gr=&=&  Gr=G6G-&

whereg; = ¢/w;, a; = cb;/w;, By = ¢/w,, anda, = cl,/w,. i = T4 = Nr, Tir = T = Ty

Note that in (7), the standard deviation of measuremeinét us define two auxiliary variables as

noises is expressed in meters rather than secondsplet

xT, Bz, a,]T be the vector of the unknown parameters to Yir =Yi = Yr

be estimated. Since; andn; in (7) are zero-mean Gaussian Xp =X—Yr. (11)
random variables, the ML estimator gf is simply obtained

by the following minimization problem Then, we can writel; andd, as

Iy di = ||x = yill
¢ = argééljn D 07 (Rifli = di = Ty + 00 — i) =lx=yr) = i =yl
‘ 1;1 = % — yirll
+Zf’f€2 (Riﬁm—di—fiﬁi—am-i-ai)Q- (8) dr = [Px = o
i=1 = % ]l. (12)

Now by using the invariance property, the estimates of thg, progress, an approximation must be applied to the model.
clock parameters are obtaineddy = ¢/, andf, = &./Bz.  The clock skew of the source node can be expressed, as

As mentioned earlier, the main problem of the ML estimatar, 5 wheres < 1 is a relatively small value. For sufficiently
is that its cost function is highly nonlinear and nonconvexmali s we have [16]

Having no closed-form solution, it must be solved approxi-
mately by iterative numerical techniques [21], [22]. As the Be=—=1-04. (13)
cost function is nonconvex, there is no guarantee that threrso Wa

converges to the global minimum even when the initial poidpplying the above approximation and squaring both sides,
is close to the solution. The difficulty in finding the solutio (10) can be written as an overdetermined linear system as
of the ML estimator leads us to employ suboptimal estimators
such as SDP and linear estimators. An SDP estimator for _
this problem is derived in [7]. A novel linear estimator is g 101 = hiy + &, (14)
introduced in the next section.

T
gi1Y1=hi1+e€in

whered; =[x}, |x.|, 6], and
IV. LINEAR LEAST SQUARES ESTIMATOR g1 = [-2yi —2& +2T; 2T2 + 2T & ]
In this section, the proposed linear estimator is derived. g;, = [-2yL —2R; +2&, 2R?Z +2R;.&;,)
Unlike the ML estimator, the proposed linear estimator has hig =& + T2 — yLyi — 2T &,

a closed-from solution. Moreover, it has significantly lowe _ _ o
. . . . hiv=& +R? —yry, — 2R,
computational complexity than the ML estimator. To obtain b1 = Sir ir — YirYir irSir



€1 = 2d;nir — 2T3.0||%, || written as

i1 = 2diftiy + 2Rir 81| TjpBe = dip — &ir + Nir
Writing (14) for {ili = 1,..., M,i # r} in matrix form yields RirBe = dip — &ir + iy (20)
G1Y1 =h; + €. (15) where A
The unknown vector?,, can be estimated by a least squares dir = \/(’A‘T = yir) ' (% — yir)

estimator. Since the above model is a linear function of thgq%, = x — y,. The ML estimator can be applied to (20)
unknown vector, the least squares estimator has a closet-fgg estimate3, from (20). Since the model in (20) is linear in

solution as [21] terms of the unknown variablg,, its ML estimator can be
9, = (G?C;1G1)71 GTCT! (hy - E{e)) (16) simply calculated by
whereC; = E{e €] }. The mean and covariance of the error B = (ggcglg?ﬂil g5 C; 'hy (21)
are obtained by whereC; = E{n,n!} and
EBlein} = =210 | _ 9i,3 = Tir, giz = Rir
E{e1} = 20]xr o (dir — &) hig = dir — &y hig = dip — Eir.

1 7r

E{&,} = 4d}5;, + 4R}.6%(|x,||?

1T

E{e} 1} = 4djof, +4T3.6%||x [ : .
¥ Now we would like to introduce another step to further
improve the estimate of the source location. The relatignsh
E{ei1€ex,1} = 4didyo? between the true value of and its estimate in (19) can be
E{&.18k1} = 4(d; + w.d|x, ) (di + wad|x,||)72. expressed as
. x =X + Ax. (22)
Note than the mean and covariance of the error are dependent

on the true values of, andd which are unknown. To deal Applying a first-order Taylor series expansiondg yields
with this problem, the solution of (16) is first obtained by

. . dir = X—Yil —IX—Yr
settingC; = I andE{e;} = 0. The mean and covariance I yill = | yrll

matrix are then calculated from the estimatespfindd, and = HA(’A( +AAX) —vill =[x +A Ax) =y, || R
again the solution of (16) is calculated by the approximate =d; —d, + (x —y))TAx/d; — (% — y,)TAx/d,
mean and covariance matrix. In order to achieve a more —d, + (% — Yi)/di (k- yr)/dT]TAX. (23)

accurate estimate, the relationship between the eleménts o
the vectord; is exploited. To do that, the following set ofPlugging (23) in (10) yields

linear equations can be formed A 3 T
4 gir - irﬂm - dir - gi74AX + Np

Go¥s = hy + € a7) Eir + Riv By — diy = g;.rAAX + Mgy (24)
where where
T2 =% O %, gi4 = 8i4
hy = [¥2]1:3 © [F2]1:3 — (R —yi)/di — (% = y»)/d».
10
Gy= 10 1|. We can write (24) in matrix form as
11 G4Ax = hy +n, (25)
The least squares solution of (17) is calculated as where the elements of the vectby are given by
N _ -1 _ A ~
¥ = (G2C;'Gz) G5 C, 'hy (18) hia = & — T By — dir
where Cy, = D[C§]1;311:3D, Cy = (GTC;lGl)_l, and Bi,él = gir + Rzrﬁm - dAir- (26)

D = di?g{wl]m}' Eventually, the estimate of the SOUrCqote that (25) is derived based on the fact thak is
location is computed as sufficiently small. Therefore, the solution of (25) can barfd
) - - by a regularized least squares estimator which is obtaiged b
x = sgn([91]1:2) ©\/[92] +y» (19) Va9 q , , Y
L . Ax = in [|[G4Ax —h AlA 27
wheresgn(-) denotes the element-wise sign function. Note that x ai%é%lzn 1Gadx = hal[” + AllAx]| 27)
in (17), a refinement is applied to the source locatobut
not to §. Now, the goal is to use the refined estimatexoto
improve the estimation accuracy &f To do that, (10) can be

where \ is a regularization parameter controlling the trade-
off between the first and second terms. In (27), we not only
minimize the cost function but also keéyx small depending



TABLE | 200
THE RUNNING TIME OF THE CONSIDERED ESTIMATORS

—P>—LLS|

Estimator  Description Time [ms]
ML The ML estimator in (8) 216.91
NEW The proposed estimator in (29) 1.76
SDP A SDP estimator in [7] 112.30
LLS | A linear estimator in [8] 0.54

LLS Il A linear estimator in [24] 0.28

Location RMSE [m]

on A. The problem in (27) has a closed-form solution give
by [23]

A% = (GIC;'Gy+ M) GICy'hy.  (28)
Hence, the final estimate of the source location is obtairyed % 2 4 6 ) s 10 _ 1? 14 15 18 2
Noise Standard Deviation [m]
X =X+ Ax. (29) (a) Location
The estimate ofx, can be obtained by plugging (29) anc oo ‘
(21) in (9) and applying a LLS estimator. Moreover, the cloc 5 el
parameters (skew and offset) of the source node can be sim ;|| —9— NEw 7
determined from3, andé,, as shown in (8). ML
CRB

o

>

o
T

V. SIMULATION RESULTS

Computer simulations are conducted to evaluate the perf
mance of the proposed linear estimator. The ML estimator
solved by the MATLAB routinef mi nunc and its solver is
initialized with the true values in an attempt to avoid pbksi
local minima and to represent a best-case performance.
regularization parametek, of the proposed estimator in (29)
is set to 0.1. Besides the ML estimator, three previous
considered estimators are selected for comparisons: a S | = =
estimator derived in [7] and two linear estimators given8h [ I 4 6 8 10 12 14 16 18 20
and [24]. A summary of the considered estimators and thc.. Noise Standard Deviation [m]
labels are provided in Table I. Note that the proposed linear (b) Clock Skew
estimator is labeled aNEW.

Clock Skew RMSE [ppm]
o
w
o
T

o

N

o
T

0.10

24.0

A network with four anchor nodes and a source nodkt —B—ttg:l 7

is considered. The anchor nodes are located|l; 10]T,
[10,90]T, [90,10]T, and [90,90]" m. The source node is
randomly placed in a region of00Om x 100m. The clock
offsets and skews of the nodes are drawn from a uniform d
tribution 2/(0,10~%) us and/(0.95,1.05), respectively. The
transmission times of the nod&s,, andT},,, are drawn from
a uniform distributiori/ (5m, 5m+1) s and{ (5m+3, 5m+4)
s, respectively. The variances of the measurement noiges
determined based on (4). The value of the path-loss expon
~ is set to 2 and assumed to be the same for all nodes. 1
values ofu, andpu; are also assumed to be the same for ¢
nodes. For each location of the source node, 100 realizatic ,
are performed where the clock parameters, transmissiastim %%, T 6 s 10 12 12 16 18 20
and noises are randomized. It is assumed that two rounds Noise Standard Deviation [m]
measurementd, = 2, are collocated among nodes. (c) Clock Offset

Fig. 2 shows the root-mean-square error (RMSE) perfaty o The RMSE performance of the considered estimatarthélocation,
mance of the considered estimators versus average stand@rtl skew, clock offset of the source node. The proposeehatirestimator
deviation of the ranging noises. The corresponding runniffgPeled as NEW) outperforms the other previously propdisedr estimators.
. . . . . reover, the close relationship between the synchranizatnd localization
times of the considered estimators are prowded n Tablep rformance of the estimators can be observed. An estindtwh provides
Note that the plotted performances are obtained by avegaghetter accuracy in synchronization has better performanéecalization too.

20.01

16.0

8.0

Clock Offset RMSE [ns]
-
N
o
T




over all source node locations and noise realizations. Fg.
shows that the ML estimator provides the optimal accurac
and its performance is close to the CRLB, especially for low
standard deviations of the noise. For higher standard devia
tions, the ML estimator starts to deviate from the CRLB. They
reason is that the ML estimator is asymptotically efficiemd a
it is expected to provide the optimal accuracy only when the
number of measurements tends to infinity or the measurem
noise is very low. The SDP estimator also performs as well
as the ML estimator. Although both ML and SDP estimatorsm
perform very well, their running times are significantly héy
than those of the linear estimators, as shown in Table I.
The proposed linear estimator significantly outperforniseot [l
linear estimators (LLS | and LLS 1), although its runninmg
is slightly higher. The reason is that the proposed estiniato [6]
a five-step estimator, while LLS | and LLS Il are a two-step
and one-step estimator, respectively. The higher the nuotfbe (7,
steps, the higher the complexity and the running time are.
There are two factors that make the proposed linear efé]
timator different from the other linear estimators prewiyu
proposed in the literature. First, unlike in the previous es
timators, in the proposed estimator, the dependency of tH¥
clock offset is removed from the model by using differential
measurements. In this case, the linearization should be peo]
formed over 3 parameters rather than 4 parameters. Second,
the proposed estimator exploits the fact that the clock stlew 4
the source node varies around 1 which is a valid assumption
in practice. However, such an assumption was not made in {515
previous estimators. In Fig. 2b and Fig. 2c, the synchrdiniza
performance of the considered estimators is compared. T
order of estimators remains unchanged in comparison with
Fig. 2a. The direct relationship between the synchroropati [14]
and localization accuracy can be clearly seen. An estimator
which provides better accuracy in synchronization hasebeths]
performance in localization too.

VI. CONCLUSION [16]

In this paper, the problem of joint synchronization and
localization in wireless sensor networks was examined. \W&]
assumed that anchor nodes with known locations are peffectl
synchronized, while the source node with unknown locatiofs;
are not synchronized. The system model and its correspgndin
maximum likelihood (ML) estimator were derived. It wa 19]
shown that the ML estimator is highly nonlinear which re-
quires intensive computations to obtain its approximate-so
tion. Avoiding the problems associated with the ML estimatol20)
a linear estimator was derived which estimates jointly the |
cation and the clock parameters of the source node. Compuzer
simulations were used to evaluate the performance of the p
posed estimator. Simulation results showed that the psapo ]
linear estimator significantly outperforms the previousigar
estimators considered in the literature. Having consilgra (23]
lower running time, the proposed linear estimator perfoass [o4)
nearly well as the ML estimator, especially for low standard
deviations of the measurement noise.
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