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Abstract—In this paper, joint sensor synchronization and local-
ization using time-of-arrival measurements is studied. Inwireless
sensor networks, the accuracy of the clock synchronization
among nodes has a great impact on the performance of the
localization using time-based ranging methods. The clocksof
the anchor nodes are typically synchronized with each other,
while those of the source nodes must be synchronized with
the anchor nodes. Each source node has its own clock char-
acterized by clock offset and clock skew. Synchronization is the
process of determining these clock parameters for the source
node, while localization is the process of estimating its location.
Generally, the estimation problem is broken down into two
subproblems, where the synchronization is first performed and
then the source node is localized. However, in this paper, a joint
synchronization and localization framework is consideredand
examined, as it is expected to provide better accuracy, especially
in dynamic networks. The system model for joint synchronization
and localization is first introduced. The maximum likelihood
(ML) estimator is then derived which is shown to be highly
nonlinear and nonconvex. The ML estimator does not have a
closed-form solution and must be solved by computationally
complex and iterative algorithms. A novel linear estimator is
derived which has a closed-form solution with significantlylower
complexity. The performance of the proposed linear estimator is
evaluated through computer simulations. Results show thatthe
proposed linear estimator outperforms the previously considered
estimators, especially in low signal-to-noise ratios.

Index Terms—sensor localization and synchronization, maxi-
mum likelihood (ML), linear least squares (LLS).

I. I NTRODUCTION

Wireless sensor networks (WSNs) have been the subject
of much interest during the past decades, mainly because
of their wide civilian, commercial, and military applications.
Synchronization and localization are two of the main compo-
nents in WSNs. Node locations in the network are required
to make their information meaningful [1]. Localization is
typically performed by collecting measurements within the
network without any aid of external resources such as the
Global Positioning System (GPS) [2], [3]. Synchronizationis
also required in WSNs, since many operations such as power
management, data fusion, spectrum allocation, and especially
localization depend on it [4].

Generally speaking, a WSN consists of a series of an-
chor nodes with known locations whose clocks are also
synchronized and a number of source nodes with unknown
locations whose clocks must be synchronized. The lack of
synchronization among nodes in a WSN is mainly due to their
different clock parameters (clock offset and skew). Hence,the

problem at hand is not only to synchronize the clocks of the
source nodes but also to estimate their locations. Typically
in asynchronous networks, the clocks at the source nodes
are first synchronized and then localization is performed [5],
[6]. However, this approach can lead to poor synchroniza-
tion performance which dramatically impacts the localization
accuracy. Due to a close relationship between synchroniza-
tion and localization, several studies have focused on joint
synchronization and localization where they are performed
simultaneously. It has been shown that joint synchronization
and localization can provide significant improvements overthe
two-step approach, especially in terms of localization accuracy
[7]–[9].

The ML estimator is a popular estimator which provides
the optimal accuracy. However, its cost function is severely
nonlinear and nonconvex. Due to the nonlinear nature of the
cost function, the ML estimator does not have a closed-form
solution and can be solved approximately by iterative methods
which require an appropriate initialization [10], [11]. The
performance of these iterative methods is highly dependent
on their initial point. An iterative method may converge
to a local minimum (or a saddle point) resulting in large
estimation errors. Convex relaxation techniques [12]–[14] and
linear estimators [15]–[17] have been introduced to deal with
this problem. In the former, the nonlinear and nonconvex
ML problem is relaxed into a convex optimization problem
such as semidefinite programming (SDP) or second order cone
programming (SOCP) [7]. In the latter, the system model is
linearized and a linear least squares (LLS) estimator is applied.
The advantage of the linear estimators is that they have closed-
form solutions. The downside of these techniques is that they
are sub-optimal and good performance cannot be expected in
all situations.

In this work, a linear estimator for joint sensor synchroniza-
tion and localization in WSNs is studied. The system model
is first introduced and the corresponding ML estimator is then
formulated. A novel linear estimator is derived by lineariz-
ing the nonlinear system model to a linear one. Although
several linear estimators have been previously introducedfor
this problem in the literature, the proposed estimator has
significantly better accuracy in exchange for small complexity
growth. The Cramér-Rao lower bound (CRLB) is used as a
benchmark for comparisons. The performance of the proposed
estimator is compared with those of the ML and other previ-
ously considered estimators through computer simulations.
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Notation. The following notation is used throughout the
paper. Lowercase and uppercase letters denote scalar values.
Bold uppercase and bold lowercase letters denote matrices and
vectors, respectively.IM and0M denote theM ×M identity
and theM×M zero matrices, respectively.1M represents the
M × 1 vector of all ones.‖ · ‖ denotes theℓ2 norm and the
operator⊙ denotes the element-wise product.[a]i and [A]i,j
denote theith element of vectora and the element at theith
row andjth column of matrixA, respectively.

II. SYSTEM MODEL

The internal clocks of the nodes are assumed to be imperfect
which causes the internal time drift away from the reference
time. The internal time is modeled as a function of the
reference as follows [4], [8], [9]

ti = ωit+ θi (1)

whereti and t are the internal time of theith node and the
reference time, respectively.ωi is the clock skew accounting
for the different rates of change in the times at different clocks
andθi represents theclock offset accounting for the difference
in clock readings between two clocks at the same moment in
time. Each node has a unique clock meaning that the clock
skew and offset are different for each node.

Consider a network withM anchor nodes and one source
node. Denote byx ∈ R

2, ωx, andθx the unknown coordinates,
the clock skew, and the clock offset of the source node, respec-
tively. Denote byyi ∈ R

2, ωi, andθi the known coordinates,
the clock skew, and the clock offset of theith anchor node, re-
spectively. The synchronization and localization are performed
simultaneously meaning that the clock parameters and location
of the source nodes are jointly estimated from a series of
noisy timing synchronization measurements collected within
the network. There are two common clock synchronization
techniques in WSNs: one-way message dissemination and two-
way message exchanges. In the former, either the source node
(forward link) or the anchor node (backward link) transmits
the synchronization messages [4]. In the latter, both source and
anchor nodes transmit synchronization messages as shown in
Fig. 1. Several rounds of messages are typically exchanged
between the nodes to achieve higher accuracy. At themth
round of message exchange, the source node transmits the
forward signal at the time stampTim and the anchor nodei
receives the signal at the time stampRim. The anchor nodei
then sends back a signal atT̄im and the source node captures
the backward signal at̄Rim. The time stampsTim and R̄im

are reported based on the internal clock of the source node,
while Rim and T̄im are reported based on the internal clock
of anchor nodei. The measured time stamps at the receivers
are modeled as [7], [8]

Rim =
ωi

ωx

Tim + ωi(ti + nim)−
ωi

ωx

θx + θi

R̄im =
ωx

ωi

T̄im + ωx(ti + n̄im)−
ωx

ωi

θi + θx (2)

whereti is the propagation time between the source node and
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Fig. 1. The two-way message exchange between the source nodeand anchor
node with different clock skews and clock offsets.

the ith anchor node

ti =
1

c
di

=
1

c
‖x− yi‖

=
1

c

√

(x− yi)T(x− yi) (3)

wherec is the propagation velocity. The termsnim and n̄im

represent measurement errors which are modeled as inde-
pendent and identically distributed (i.i.d.) Gaussian random
variables with varianceσ2

i andσ̄2
i , respectively. The variances

of the measurements do not vary with time. However, they are
dependent on the received SNR and typically modeled as [18]

σ2

i = µid
γ
i , σ̄2

i= µxd
γ
i (4)

whereµi andµx define the relationship between the noise vari-
ance and the true distance and their values are dependent on
the propagation environment and hardware implementations.
γ is the path-loss exponent which typically varies between 2
(free space) and 4 (harsh environments) [19], [20]. Note that
all four time stamps{Tim, Rim, T̄im, R̄im} are available to
the anchor nodes which are used to estimate the location and
clock parameters of the source node.

We assume that duringL rounds of message exchanges,
the clock parameters and location of the source node do not
change. To further simplify (2), theL rounds of message
exchanges can be averaged as

Ri =
ωi

ωx

Ti + ωi(ti + ni)−
ωi

ωx

θx + θi

R̄i =
ωx

ωi

T̄i + ωx(ti + n̄i)−
ωx

ωi

θi + θx (5)

where

Ti =
1

L

L
∑

m=1

Tim, Ri =
1

L

L
∑

m=1

Rim

T̄i =
1

L

L
∑

m=1

T̄im, R̄i =
1

L

L
∑

m=1

R̄im (6)
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and ni and n̄i are i.i.d. Gaussian random variables with
varianceσ2

i /L and σ̄2
i /L, respectively. It can be seen from

(5) that collecting more rounds of measurements decreases the
effect of the measurement noise which leads to more accurate
localization and synchronization performance.

III. M AXIMUM L IKELIHOOD ESTIMATOR

Because of several attractive properties, the ML estimator
is a very popular estimator. An important property of the
ML estimator is that it is asymptotically optimal and it can
reach the CRLB when the number of measurements tends
to infinity [21, Ch. 7]. In other words, there is no unbiased
estimator that performs better than the ML estimator. Note
that the CRLB expresses a lower bound on the variance
of any unbiased estimator [21, Ch. 3]. The CRLB of the
proposed system model is derived in [7]. The ML estimator
is obtained by maximizing the likelihood function over the
unknown parameters. To make the expressions simpler, two
new auxiliary variables are introduced and the model in (5) is
rewritten as

ni = Riβi − di − Tiβx + αx − αi

n̄i = R̄iβx − di − T̄iβi − αx + αi (7)

whereβi = c/ωi, αi = cθi/ωi, βx = c/ωx, andαx = cθx/ωx.
Note that in (7), the standard deviation of measurement
noises is expressed in meters rather than seconds. Letϕ =
[xT, βx, αx]

T be the vector of the unknown parameters to
be estimated. Sinceni and n̄i in (7) are zero-mean Gaussian
random variables, the ML estimator ofϕ is simply obtained
by the following minimization problem

ϕ̂ = argmin
ϕ∈R4

M
∑

i=1

σ−2

i (Riβi − di − Tiβx + αx − αi)
2

+

M
∑

i=1

σ̄−2

i

(

R̄iβx − di − T̄iβi − αx + αi

)2
. (8)

Now by using the invariance property, the estimates of the
clock parameters are obtained byω̂x = c/β̂x andθ̂x = α̂x/β̂x.
As mentioned earlier, the main problem of the ML estimator
is that its cost function is highly nonlinear and nonconvex.
Having no closed-form solution, it must be solved approxi-
mately by iterative numerical techniques [21], [22]. As the
cost function is nonconvex, there is no guarantee that the solver
converges to the global minimum even when the initial point
is close to the solution. The difficulty in finding the solution
of the ML estimator leads us to employ suboptimal estimators,
such as SDP and linear estimators. An SDP estimator for
this problem is derived in [7]. A novel linear estimator is
introduced in the next section.

IV. L INEAR LEAST SQUARES ESTIMATOR

In this section, the proposed linear estimator is derived.
Unlike the ML estimator, the proposed linear estimator has
a closed-from solution. Moreover, it has significantly lower
computational complexity than the ML estimator. To obtain

the proposed linear estimator, the system model needs to first
linearized in terms of the unknown variables. The optimization
problem is then formulated as a linear least squares (LLS)
problem which has a closed-form solution. Rearranging (7)
yields

ξi − Tiβx = di − αx + ni

ξ̄i + R̄iβx = di + αx + n̄i (9)

whereξi = Riβi − αi and ξ̄i = αi − T̄iβi. To eliminate the
dependency of (9) on the unknown variableαx, an anchor node
is selected as a reference and its measurements are subtracted
from all other measurements. Letr ∈ {1, . . . ,M} be the index
of the reference anchor node andyr be its location. Therefore,
(9) is expressed as

ξir − Tirβx + dr = di + nir

ξ̄ir + R̄irβx + dr = di + n̄ir (10)

where

Tir = Ti − Tr, T̄ir = T̄i − T̄r

Rir = Ri −Rr, R̄ir = R̄i − R̄r

ξir = ξi − ξr, ξ̄ir = ξ̄i − ξ̄r

nir = ni − nr, n̄ir = n̄i − n̄r.

Let us define two auxiliary variables as

yir = yi − yr

xr = x− yr. (11)

Then, we can writedi anddr as

di = ‖x− yi‖

= ‖(x− yr)− (yi − yr)‖

= ‖xr − yir‖

dr = ‖x− yr‖

= ‖xr‖. (12)

To progress, an approximation must be applied to the model.
The clock skew of the source node can be expressed asωx =
1+ δ, whereδ ≪ 1 is a relatively small value. For sufficiently
small δ, we have [16]

βx =
1

ωx

= 1− δ. (13)

Applying the above approximation and squaring both sides,
(10) can be written as an overdetermined linear system as

gT

i,1ϑ1 = hi,1 + ǫi,1

ḡT

i,1ϑ1 = h̄i,1 + ǭi,1 (14)

whereϑ1 = [xT
r , ‖xr‖, δ]

T, and

gi,1 =
[

−2yT
ir −2ξir + 2Tir 2T 2

ir + 2Tirξir
]

ḡi,1 =
[

−2yT
ir −2R̄ir + 2ξ̄ir 2R̄2

ir + 2R̄irξ̄ir
]

hi,1 = ξ2ir + T 2

ir − yT

iryir − 2Tirξir

h̄i,1 = ξ̄2ir + R̄2

ir − yT

iryir − 2R̄irξ̄ir
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ǫi,1 = 2dinir − 2Tirδ‖xr‖

ǭi,1 = 2din̄ir + 2R̄irδ‖xr‖.

Writing (14) for {i|i = 1, . . . ,M, i 6= r} in matrix form yields

G1ϑ1 = h1 + ǫ1. (15)

The unknown vector,ϑ1, can be estimated by a least squares
estimator. Since the above model is a linear function of the
unknown vector, the least squares estimator has a closed-form
solution as [21]

ϑ̂1 =
(

GT

1 C
−1

1
G1

)−1

GT

1 C
−1

1
(h1 − E{ǫ1}) (16)

whereC1 = E{ǫ1ǫ
T
1 }. The mean and covariance of the error

are obtained by

E{ǫi,1} = −2Tirδ‖xr‖

E{ǭi,1} = 2δ‖xr‖ωx(dir − ξ̄ir)

E{ǫ2i,1} = 4d2iσ
2

ir + 4T 2

irδ
2‖xr‖

2

E{ǭ2i,1} = 4d2i σ̄
2

ir + 4R̄2

irδ
2‖xr‖

2

E{ǫi,1ǫk,1} = 4didkσ
2

r

E{ǭi,1ǭk,1} = 4(di + ωxδ‖xr‖)(dk + ωxδ‖xr‖)σ̄
2

r .

Note than the mean and covariance of the error are dependent
on the true values ofxr and δ which are unknown. To deal
with this problem, the solution of (16) is first obtained by
settingC1 = I and E{ǫ1} = 0. The mean and covariance
matrix are then calculated from the estimates ofxr andδ, and
again the solution of (16) is calculated by the approximate
mean and covariance matrix. In order to achieve a more
accurate estimate, the relationship between the elements of
the vectorϑ̂1 is exploited. To do that, the following set of
linear equations can be formed

G2ϑ2 = h2 + ǫ2 (17)

where

ϑ2 = xr ⊙ xr

h2 = [ϑ2]1:3 ⊙ [ϑ2]1:3

G2 =





1 0
0 1
1 1



 .

The least squares solution of (17) is calculated as

ϑ̂2 =
(

GT

2 C
−1

2
G2

)−1

GT

2 C
−1

2
h2 (18)

where C2 = D[Cϑ]1:3,1:3D, Cϑ =
(

GT
1 C

−1

1
G1

)−1
, and

D = diag{[ϑ̂1]1:3}. Eventually, the estimate of the source
location is computed as

x̂ = sgn([ϑ̂1]1:2)⊙

√

|ϑ̂2|+ yr (19)

wheresgn(·) denotes the element-wise sign function. Note that
in (17), a refinement is applied to the source locationx but
not to δ. Now, the goal is to use the refined estimate ofx to
improve the estimation accuracy ofδ. To do that, (10) can be

written as

Tirβx = d̂ir − ξir + nir

R̄irβx = d̂ir − ξ̄ir + n̄ir (20)

where
d̂ir =

√

(x̂r − yir)T(x̂r − yir)

and x̂r = x̂ − yr. The ML estimator can be applied to (20)
to estimateβx from (20). Since the model in (20) is linear in
terms of the unknown variableβx, its ML estimator can be
simply calculated by

β̂x =
(

gT

3 C
−1

3
g3

)−1

gT

3 C
−1

3
h3 (21)

whereC3 = E{nrn
T
r } and

gi,3 = Tir, ḡi,3 = R̄ir

hi,3 = d̂ir − ξir, h̄i,3 = d̂ir − ξ̄ir .

Now we would like to introduce another step to further
improve the estimate of the source location. The relationship
between the true value ofx and its estimatêx in (19) can be
expressed as

x = x̂+∆x. (22)

Applying a first-order Taylor series expansion todir yields

dir = ‖x− yi‖ − ‖x− yr‖

= ‖(x̂+∆x)− yi‖ − ‖(x̂+∆x)− yr‖

= d̂i − d̂r + (x̂− yi)
T∆x/d̂i − (x̂ − yr)

T∆x/d̂r

= d̂ir + [(x̂− yi)/d̂i − (x̂− yr)/d̂r]
T∆x. (23)

Plugging (23) in (10) yields

ξir − Tirβ̂x − d̂ir = gT

i,4∆x+ nir

ξ̄ir + R̄ir β̂x − d̂ir = ḡT

i,4∆x+ n̄ir (24)

where

gi,4 = ḡi,4

= (x̂− yi)/d̂i − (x̂ − yr)/d̂r.

We can write (24) in matrix form as

G4∆x = h4 + nr (25)

where the elements of the vectorh4 are given by

hi,4 = ξir − Tirβ̂x − d̂ir

h̄i,4 = ξ̄ir + R̄ir β̂x − d̂ir. (26)

Note that (25) is derived based on the fact that∆x is
sufficiently small. Therefore, the solution of (25) can be found
by a regularized least squares estimator which is obtained by

∆x̂ = argmin
∆x∈R2

‖G4∆x− h4‖
2 + λ‖∆x‖2 (27)

whereλ is a regularization parameter controlling the trade-
off between the first and second terms. In (27), we not only
minimize the cost function but also keep∆x small depending
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TABLE I
THE RUNNING TIME OF THE CONSIDERED ESTIMATORS.

Estimator Description Time [ms]

ML The ML estimator in (8) 216.91
NEW The proposed estimator in (29) 1.76
SDP A SDP estimator in [7] 112.30
LLS I A linear estimator in [8] 0.54
LLS II A linear estimator in [24] 0.28

on λ. The problem in (27) has a closed-form solution given
by [23]

∆x̂ =
(

GT

4 C
−1

3
G4 + λI

)−1

GT

4 C
−1

3
h4. (28)

Hence, the final estimate of the source location is obtained by

x̃ = x̂+∆x̂. (29)

The estimate ofαx can be obtained by plugging (29) and
(21) in (9) and applying a LLS estimator. Moreover, the clock
parameters (skew and offset) of the source node can be simply
determined fromβ̂x and α̂x, as shown in (8).

V. SIMULATION RESULTS

Computer simulations are conducted to evaluate the perfor-
mance of the proposed linear estimator. The ML estimator is
solved by the MATLAB routinefminunc and its solver is
initialized with the true values in an attempt to avoid possible
local minima and to represent a best-case performance. The
regularization parameter,λ, of the proposed estimator in (29)
is set to 0.1. Besides the ML estimator, three previously
considered estimators are selected for comparisons: a SDP
estimator derived in [7] and two linear estimators given in [8]
and [24]. A summary of the considered estimators and their
labels are provided in Table I. Note that the proposed linear
estimator is labeled asNEW.

A network with four anchor nodes and a source nodes
is considered. The anchor nodes are located at:[10, 10]T,
[10, 90]T, [90, 10]T, and [90, 90]T m. The source node is
randomly placed in a region of100m × 100m. The clock
offsets and skews of the nodes are drawn from a uniform dis-
tribution U(0, 10−1) µs andU(0.95, 1.05), respectively. The
transmission times of the nodesTim andT̄im are drawn from
a uniform distributionU(5m, 5m+1) s andU(5m+3, 5m+4)
s, respectively. The variances of the measurement noises are
determined based on (4). The value of the path-loss exponent
γ is set to 2 and assumed to be the same for all nodes. The
values ofµx andµi are also assumed to be the same for all
nodes. For each location of the source node, 100 realizations
are performed where the clock parameters, transmission times,
and noises are randomized. It is assumed that two rounds of
measurements,L = 2, are collocated among nodes.

Fig. 2 shows the root-mean-square error (RMSE) perfor-
mance of the considered estimators versus average standard
deviation of the ranging noises. The corresponding running
times of the considered estimators are provided in Table I.
Note that the plotted performances are obtained by averaging
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Fig. 2. The RMSE performance of the considered estimators for the location,
clock skew, clock offset of the source node. The proposed linear estimator
(labeled as NEW) outperforms the other previously proposedlinear estimators.
Moreover, the close relationship between the synchronization and localization
performance of the estimators can be observed. An estimatorwhich provides
better accuracy in synchronization has better performancein localization too.
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over all source node locations and noise realizations. Fig.2a
shows that the ML estimator provides the optimal accuracy
and its performance is close to the CRLB, especially for low
standard deviations of the noise. For higher standard devia-
tions, the ML estimator starts to deviate from the CRLB. The
reason is that the ML estimator is asymptotically efficient and
it is expected to provide the optimal accuracy only when the
number of measurements tends to infinity or the measurement
noise is very low. The SDP estimator also performs as well
as the ML estimator. Although both ML and SDP estimators
perform very well, their running times are significantly higher
than those of the linear estimators, as shown in Table I.
The proposed linear estimator significantly outperforms other
linear estimators (LLS I and LLS II), although its running time
is slightly higher. The reason is that the proposed estimator is
a five-step estimator, while LLS I and LLS II are a two-step
and one-step estimator, respectively. The higher the number of
steps, the higher the complexity and the running time are.

There are two factors that make the proposed linear es-
timator different from the other linear estimators previously
proposed in the literature. First, unlike in the previous es-
timators, in the proposed estimator, the dependency of the
clock offset is removed from the model by using differential
measurements. In this case, the linearization should be per-
formed over 3 parameters rather than 4 parameters. Second,
the proposed estimator exploits the fact that the clock skewof
the source node varies around 1 which is a valid assumption
in practice. However, such an assumption was not made in the
previous estimators. In Fig. 2b and Fig. 2c, the synchronization
performance of the considered estimators is compared. The
order of estimators remains unchanged in comparison with
Fig. 2a. The direct relationship between the synchronization
and localization accuracy can be clearly seen. An estimator
which provides better accuracy in synchronization has better
performance in localization too.

VI. CONCLUSION

In this paper, the problem of joint synchronization and
localization in wireless sensor networks was examined. We
assumed that anchor nodes with known locations are perfectly
synchronized, while the source node with unknown locations
are not synchronized. The system model and its corresponding
maximum likelihood (ML) estimator were derived. It was
shown that the ML estimator is highly nonlinear which re-
quires intensive computations to obtain its approximate solu-
tion. Avoiding the problems associated with the ML estimator,
a linear estimator was derived which estimates jointly the lo-
cation and the clock parameters of the source node. Computer
simulations were used to evaluate the performance of the pro-
posed estimator. Simulation results showed that the proposed
linear estimator significantly outperforms the previouslylinear
estimators considered in the literature. Having considerably
lower running time, the proposed linear estimator performsas
nearly well as the ML estimator, especially for low standard
deviations of the measurement noise.
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