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Abstract—Jamming attacks can significantly impact the per-
formance of wireless communication systems, and can lead to
significant overhead in terms of re-transmissions and increased
power consumption. This paper considers the problem of optimal
jamming over an additive white Gaussian noise channel. We
derive the optimal jamming signal for various digital amplitude-
phase modulated constellations and show that it is not always
optimal to match the jammer’s signal to the victim signal in
order to maximize the error probability at the victim receiver.
Connections between the optimum jammer obtained in this
analysis and the well-known pulsed jammer, popularly analyzed
in the context of spread spectrum communication systems are
illustrated. The gains obtained by the jammer when it knows the
victim’s modulation scheme and uses the optimal jamming signals
obtained in this paper as opposed to conventional additive white
Gaussian noise jamming are evaluated in terms of the additional
signal power needed by the victim receiver to achieve same error
rates under these two jamming strategies. We then extend these
findings to obtain the optimal jamming signal distribution when
a) the victim uses an OFDM-modulated signal and b) when
there are multiple jammers attacking a single victim transmitter-
receiver pair. Numerical results are presented in all the above
cases to validate the theoretical inferences presented.

I. INTRODUCTION

The inherent openness of the wireless medium makes it
susceptible to both intentional and un-intentional interference.
Interference from neighboring cells in a wireless communi-
cation system is one of the major causes for un-intentional
interference. On the flip side, intentional interference corre-
sponds to adversarial attacks on a victim receiver that is not
operating in a defensive mode. More generally, adversarial
attacks in a wireless system can be broadly classified based
on the capability of the adversary- a) Eavesdropping attack,
in which the eavesdropper (passive adversary) can listen to
the wireless channel and try to infer information (which if
leaked may severely compromise data integrity) [1], [2], [3],
b) Jamming attack, in which the jammer (active adversary) can
transmit energy in order to disrupt reliable data transmission
or reception [4], [5], [6] and c) Hybrid attack, in which an
adversary operates “with the dual capability of either passively
eavesdropping or actively jamming any ongoing transmission,
with the objective of causing maximum disruption to the
ability of the legitimate transmitter to share a secret message
with its receiver” [7], [8].

In this paper, we study jamming attacks against practical
wireless signals, namely digital amplitude-phase modulated
signals. Jamming has traditionally been studied in the context
of spread spectrum communications [9]. Barrage jamming,
partial-band/narrow-band jamming, tone-jamming (where a
victim is attacked by sending either a single or multiple
jamming tones) and pulsed jamming are the most common
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types of jamming models considered in wireless communi-
cation systems. Deviating from these traditional simplistic
techniques, we want to know “What is the optimum statistical
distribution for power constrained jamming signals in order
to maximize the error probability of digital amplitude-phase
modulated constellations?” As will be discussed in detail
shortly, this paper answers a question that is more relevant to
practical wireless communication systems when compared to
similar questions studied in the past, and consequently offers
different solutions mainly because incorrect system models
were previously considered and thus the wrong questions were
answered.

Most of the earlier literature that asks similar questions
regarding optimal jamming signals can be divided into two
categories a) investigations that consider optimal jamming
against Gaussian signaling schemes [4], [5], [6], [11], and
b) investigations that study optimal jamming against pulse
amplitude modulated (PAM) signals in the absence of ambient
noise [12], [13]. Typically, an information theoretic framework
was considered, e.g., [5], [6], [11], [13]. More specifically, in
[5], the capacity of a wireless channel was analyzed in the
presence of correlated jamming, where the authors showed that
Gaussian signaling and Gaussian jamming form a saddle point
solution. Here, the authors also showed that when the jammer
does not have knowledge regarding the phase and the timing
offsets introduced by the wireless channels, it is optimal in
terms of the capacity minimization to be uncorrelated with
the victim signal. In [6], [11], independent Gaussian input
and noise (jamming signal) signals were again shown to be a
saddle point solution for the mutual information game between
the victim and the jammer. The convexity properties of error
probability with respect to the AWGN jamming signal power
against a binary-valued victim signal was studied in [12],
which showed that a pulsed AWGN jamming signal is optimal.
In [13], the worst case performance, in terms of maximizing
the error probability and/or minimizing the capacity, achieved
by any noise distribution was investigated when binary data
was transmitted. The optimal noise distribution was shown to
be a shifted version of the binary input signal.

Unfortunately, the previous works are not sufficiently real-
istic. This is because the works that belong to category (a)
consider jamming against Gaussian signaling which is not
used in practice and the works that belong to category (b)
ignore the presence of thermal/ambient noise which is typi-
cally unavoidable in wireless environments. More importantly,
these unrealistic assumptions lead to the wrong questions and
thereby result in wrong conclusions, which are not relevant
to practical wireless systems. The work closest to the present
study is [14] which studies the optimal power distribution for
any given jamming signal, but does not address the question
raised in this paper. We show that optimal jamming sig-
nals against digital amplitude phase modulated constellations
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follow the statistical distribution of well-known modulation
schemes under special conditions, and are not always matched
(matching in this context refers to case where the jammer has
the same distribution as the victim) to the victim signals. This
finding is in contrast to the results obtained in the previous
works.

In what follows, it is assumed that the victim receiver is not
operating in an anti-jamming mode. Such jamming scenarios
commonly occur because most transceivers do not employ
jamming detection algorithms. For such a victim receiver, the
decision regions for decoding the received signal will remain
the same irrespective of the presence or absence of a jamming
signal. For example, when the victim uses a symmetric binary
signaling scheme i.e., signal levels given by ±A where A is
the amplitude of signaling, and is unaware of the presence of
the jammer, the decision boundary will still be 0. Improved
jamming techniques, such as the ones proposed in this paper,
help military and/or practical wireless communication systems
jam their adversaries’ received signal before they can interpret
any sensitive information.

We assume in this work that the jammer is aware of the
modulation scheme of the communication signal (for example,
by employing modulation classification schemes [15], [16])
and also the power levels of the communication and the
jamming signals at the victim receiver (using power control
information, location and/or path loss calculations). These
assumptions enable us to analyze the worst case jamming
performance against standard modulation schemes. We first
show that the optimal power-constrained jamming signal
shares time only between two signal levels, i.e., the jamming
signal distribution takes the form of a binary distribution along
any signaling dimension (in-phase and quadrature). Further,
it will be shown that this binary distribution is nothing but
the statistical distribution of well-known modulation schemes
under special conditions, and that it is not always the same
as the victim signal’s distribution. These results are then
extended to the more practical scenarios including (i) a non-
coherent scenario where there is a phase mismatch between
the jammers’ signal and the victim signal, (ii) an asynchronous
scenario where there is a timing offset between the jammers’
signal and the victim signal and (iii) when the jammer is not
perfectly aware of the power levels of the communication and
jamming signals at the victim receiver.

We also extend this study to the cases where a) the victim
transmitter-receiver pair use an OFDM-modulated signal to
communicate and b) when multiple jammers attack a single
victim transmitter-receiver pair. Most previous works that
study jamming against OFDM signals consider AWGN jam-
ming (see the tutorial paper [17] for more information), which
as we show in this work is sub-optimal in terms of the error
rates created at the victim receiver. Further, we show that
under the same average power constraints i.e., the case where
multiple jammers have the same total average power as a single
jammer, significantly higher error rates can be achieved when
the multiple jammers are perfectly coordinated.

The rest of this paper is organized as follows. The system
model is introduced in Section II. The optimal jamming signal
distribution when the victim and the jammers’ signals are

phase and time aligned is derived in Section III. In Section IV,
the jammers’ statistical distribution is derived for the cases
when non-idealities are introduced by the wireless channel
due to which the jamming and the victim signals are not
perfectly aligned. In Section V, we extend the analysis to the
case where the victim employs an OFDM modulated signal
and in Section VI we study the performance of multiple
jammers attacking a single victim transmitter-receiver pair.
Numerical results are presented in sections III-VI to support
the theoretical inferences made. Finally conclusions are drawn
in Section VII.

II. SYSTEM MODEL

We assume that the data conveyed in the legitimate com-
munication signal is mapped onto a known digital amplitude-
phase constellation. The low pass equivalent of the transmitted
signal is represented as s(t) =

∑∞
m=−∞

√
PSsmg(t −mT ),

where PS is the average received signal power, g(t) is the
real valued pulse shape and T is the symbol interval. The
complex random variables sm denote the modulated symbols,
with a uniform distribution fS(s), i.e., all possible constella-
tion points are equally likely. Without loss of generality, the
average energy of g(t) and modulated symbols E(|sm|2) are
normalized to unity.

It is assumed that the transmitted signal passes through
an AWGN channel (received power is constant over the
observation interval) while being attacked by a jamming signal
represented as j(t) =

∑∞
m=−∞

√
PJjmg(t − mT ), where

PJ is the average jamming signal power as seen at the
victim receiver and jm denote the jamming symbols that are
distributed according to fJ(j) with E(|j|2) ≤ 1. Assuming
a coherent receiver and perfect synchronization, the received
signal after matched filtering and sampling once per symbol
interval is given by

yk = y(t = kT ) =
√
PSsk +

√
PJjk + nk, k = 1, 2, .. (1)

where nk is zero-mean additive white Gaussian noise whose
distribution is denoted by fN (n) with variance σ2. The victim
signal sk, the jamming signal jk and the noise samples nk are
all assumed to be statistically independent of each other. Let
SNR = PS

σ2 and JNR = PJ

σ2 indicate the signal power (PS) and
jamming power (PJ) to noise power (σ2) ratios respectively.
In this paper, we initially assume that the jammer has perfect
knowledge of SNR and JNR as seen at the victim receiver.
This assumption allows for the analysis of the maximum error
rates that can be created by the jammer at the victim receiver.
We will later relax this assumption.

A. Motivation

Here, we briefly motivate the reason to look beyond AWGN
jamming. Consider a BPSK signaling scenario with PS = 1,
PJ = 1 and σ2 = 0 (i.e. the channel does not add any noise).
Thus the received signal is expressed as

yk = sk + jk, k = 1, 2, . . . . (2)

If the jammer were aware of the signals sent by the transmitter,
then it could negate them by sending the opposite of the
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transmit signal, i.e., the jammer sends a −1 symbol to destroy
a +1 symbol. However, this is not possible in real time as
the jammer can not demodulate the transmit signal before
transmission occurs. Hence, it sends a random BPSK signal
to disrupt the communication. The receiver can decode the
symbols correctly half of the time i.e., when it gets ±2. For
the other half of the time when it gets 0, it makes a random
guess regarding the transmit signal with probability 1

2 of being
correct. Thus the overall error probability is 1

4 = 0.25. On
the other hand, the error probability is 0.1587 if an AWGN
signal (σ2 = 1) is used as the jamming signal [9]. For this
toy example, the BPSK modulated jammer increased the error
probability by 57.5% as compared to the AWGN jammer
(under similar power constraints) which suggests that there
are interesting avenues to pursue beyond AWGN jamming.

III. PERFECT CHANNEL KNOWLEDGE

First we analyze the statistics of the optimal jammer when
it has perfect channel knowledge i.e., the jamming signal is
phase and time synchronous with the victim signal. In all
the analysis that follows, it is assumed that the receiver is
unaware of the presence of the jammer and hence the decision
regions for the data detection remain the same as if there
were no jammer. We first derive the optimum jamming signal
distribution against a M -QAM1 victim signal and later show
that this can be simplified for specific modulation schemes.

For 2-dimensional signals, such as M -QAM, define ȳk =
[<yk,=yk]T where <yk indicates the real (in-phase) part of
yk and =yk indicates the imaginary (quadrature) part of yk.
Along similar lines we can define s̄k, j̄k and n̄k for all k =
1, 2, . . . ,K. Then (1) is rewritten as

ȳk =
√
PS s̄k +

√
PJ j̄k + n̄k, k = 0, 1, . . . ,K. (3)

Since the victim signal and the jammer’s signal are coherent,
2-dimensional modulation schemes such as M -QAM can be
analyzed by considering them as two independent

√
M -PAM

signals along the in-phase and quadrature dimensions [22].
Therefore, the average probability of error2 pe of an M -QAM
victim signal along any signaling dimension in an AWGN
channel in the presence of jamming signal j̄ is given by

pe(j,SNR, JNR) ≈

(
1− 1√

M

)
1

2
×[

erfc

(
√

SNR
dmin

2
+
√

JNRj

)
+erfc

(
√

SNR
dmin

2
−
√

JNRj

)]
,

(4)

where j = <j̄ or =j̄, M is the order of the constellation and
dmin is the minimum distance of the underlying modulation
scheme [22].

The jammer intends to maximize this error probability by
transmitting a sequence of symbols j (along the in-phase and

1The analysis presented in this paper can also be extended to cross-QAM
signals by using the appropriate error probability expressions. But in this
paper, we focus on square QAM signals.

2With a slight abuse of notation, we use pe to denote the probability of
error. The variables that it depends on are shown within brackets. For example,
pe(PS) indicates that pe is a function of the signal power PS .

the quadrature dimensions) which are to be chosen based on
PS (or SNR) and PJ (or JNR). Notice that (4) is symmetric
in j. Therefore, pe(j,SNR, JNR) = pe(−j,SNR, JNR) =
pe(|j|,SNR, JNR). Hence, the polarity of j is irrelevant
here. Therefore, the error probability is maximized over the
distribution of a = |j|. However, to maximize the entropy
of the jamming signal, transmitting a value of a, implies
transmitting j = +a and j = −a with equal probability.
The optimization problem for such a jammer can thus be
formulated as

max
fA

∫
a

pe (a,SNR, JNR) fA(a)da s.t. E(a2) ≤ 1

2
,

≡ max
fA

E
(
pe(a,SNR, JNR)

)
s.t. E(a2) ≤ 1

2
. (5)

Notice that the optimization is over the signal level distribution
fA and that E(a2) ≤ 1

2 because we consider only one
signaling dimension (recall that E(||j̄||2) ≤ 1, where ||j̄||
indicates the norm of the vector j̄).3 Similar optimization
problems have previously been studied in the context of
stochastic signaling for maximizing the probability of signal
detection and minimizing the error probability in [14], [18],
[19] and references therein. Below, we briefly present the
solution for the optimization problem in (5). A more elaborate
and general proof for this optimization problem will be shown
in Theorem 4 in Section VI, where we discuss the case of
multiple jammers attacking a single victim receiver.

A. Optimum Jamming Signal Distribution
Define sets U and W as

U = {(u1, u2) : u1 = pe (a,SNR, JNR) , u2 = a2}

W = {(w1, w2) : w1 = EfA

(
pe (a,SNR, JNR)

)
, w2 = EfA(a

2)}.

Since pe (a,SNR, JNR) is a continuous function (erfc is a
continuous function) defined on the support of a, the mapping
from [0, amax] (notice that it can be safely assumed that a ≤
amax for some finite amax > 0 since arbitrarily large amplitudes
of the signal cannot be generated by any practical transmitter)
to (R+)2 defined by (pe (a,SNR, JNR) , a2) is continuous.
Since the continuous image of a compact set is compact, the
set U is also compact.

Since U is compact, the convex hull V of U is closed with
dimensions smaller than or equal to 2 because U and V are
subsets of (R+)2. Based on the definition of the set W , it can
be shown that V = W [18, Proposition 3], [20] (an elaborate
proof for this is given in Theorem 4). Further, Carathéodory’s
theorem [21], states that any point in V can be expressed
as a convex combination of at most three points in U as they
belong to (R+)2. Since the optimal jamming signal pdf should
maximize the objective function, the optimal solution exists on
the boundary i.e., on V (as it is a closed set). Since any point
on the boundary can be expressed as a convex combination of
at most 2 elements in U , the optimal jamming signal level pdf
fA(a) can be represented as a discrete random variable with
at most 2 mass points.

3Depending on whether the victim’s modulation scheme is symmetric or not
along the in-phase and quadrature dimensions, this constraint can be changed
accordingly.
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pe(λ, a1, a2,SNR, JNR) ≈

(
1− 1√

M

)
1

2

{
λ

[
erfc

(
√

SNR
dmin

2
+
√

JNRa1

)
+erfc

(
√

SNR
dmin

2
−
√

JNRa1

)]

+ (1− λ)

[
erfc

(
√

SNR
dmin

2
+
√

JNRa2

)
+erfc

(
√

SNR
dmin

2
−
√

JNRa2

)]}
(7)

Since the above proof is generic for both the in-phase
and quadrature dimensions, the optimal jamming signal dis-
tribution has at most two signal levels along any signaling
dimension. Therefore the optimal jamming signal pdf along
any signaling dimension is given by

fA(a) = λδ(a− a1) + (1− λ)δ(a− a2), λ ∈ [0, 1]

λa2
1 + (1− λ)a2

2 ≤
1

2
, (6)

where λ and (1 − λ) are the probabilities with which the
jammer sends signals a1 and a2 respectively along any dimen-
sion and δ(a) is the Dirac-delta function. Thus, the problem
of finding an optimum jamming signal distribution is now
reduced to finding λ, a1 and a2 rather than a continuous
distribution fJ(j̄) for the jamming signal j̄ given in (3).

Remark 1: It is important to notice that this analysis holds
true for any M -PAM and M -QAM signals because we started
the analysis with the pe of an M -QAM signal by decomposing
it into two

√
M -PAM signals. Appropriate pe expressions

and average jamming signal energy constraints must be used
based on the victim signal’s modulation. For example, the
average jamming signal energy constraint E(a2) ≤ 1 for the
case of M -PAM signals as it is natural to consider jamming
signals only in the in-phase dimension against M -PAM signals
(only then pe will be maximized) and E(a2) ≤ 1

2 for two-
dimensional signals such as M -QAM.

B. Analysis against M -QAM victim signals

For the case of jamming against a M -QAM victim signal,
it is not hard to show that pe(a,SNR, JNR) in (4) is a non-
decreasing function of a and hence pe is maximized on the
boundary defined by E(a2) = 1/2 (it is 1/2 because we
consider only one signaling dimension). Using the fact that
the optimum jamming signal level distribution is given by (6),
the overall pe along any signaling dimension is given by (7).

Numerically obtaining the optimal jamming signal distribu-
tion under an average power constraint is difficult for a general
range of SNR and JNR. Similar optimization problems have
been solved using global optimization techniques such as
particle swarm optimization in [18]. In this paper, we first
state 3 theorems that help in establishing the optimal jamming
signal distribution against M -QAM victim signals for certain
ranges of SNR and JNR. Due to a lack of space, we only
sketch the proofs of these theorems. Later, we support these
claims and present the optimal jamming signals for a general
range of SNR and JNR via simulations performed using
the optimization toolbox in Matlab. We also present several
remarks that help the exposition of these Theorems easier.

Theorem 1: QPSK is the optimal jamming
signal when the victim signal uses M -QAM and√

SNR
d2

min

2 <
√

JNR tanh
(

2

√
SNR

d2
min

2 JNR
)

.

Remark 2: Notice that tanh
(

2

√
SNR

d2
min

2 JNR
)
≈1 when

SNR
d2

min

2 JNR>1. Therefore, in this case, QPSK is the optimal
jamming signal when SNR

d2
min

2 <JNR which is a stricter con-

dition than
√

SNR
d2

min

2 <
√

JNR tanh
(

2

√
SNR

d2
min

2 JNR
)

.

Remark 3: The theoretical pe when QPSK is used as a
jamming signal is given by substituting a1 = 1√

2
and λ = 1

in (7). The slope of the error probability with respect to SNR

i.e., ∂pe
∂SNR within a proportionality constant when SNR

d2
min

2 <

JNR and SNR
d2

min

2 JNR > 1 can be approximated as

AWGN:
−1√

SNR× JNR
; QPSK:

−2√
SNR× exp (JNR)

, (8)

which shows that the error probability due to a QPSK jamming
signal decays more slowly with JNR when compared to the
AWGN jamming signal. Thus from a jammers’ perspective it is
advantageous to use a QPSK jamming signal when compared
to traditional AWGN jamming.

Proof: Since E(a2)= 1
2 , we have λa2

1 + (1 − λ)a2
2 = 1

2 .
Using this relationship, (7) can be written as a function of
a1 denoted by pe(λ, a1,SNR, JNR). a1 = {0, 1√

2λ
, 1√

2
} are

the solutions to ∂pe(λ,a1,SNR,JNR)
∂a1

=0. To prove the optimal-
ity of QPSK, we need to show that pe(λ, a1,SNR, JNR)
is maximized at a1= 1√

2
(we will discuss the solutions

a1=0, 1√
2λ

in Theorems 2 and 3). The second derivative

of pe with respect to a1 i.e., ∂2pe(λ,a1,SNR,JNR)
∂a2

1
|a1= 1√

2
has

4 terms, each of which can be shown to be < 0 when√
SNR

d2
min

2 <
√

JNR tanh
(

2

√
SNR

d2
min

2 JNR
)

. Further, this
holds true irrespective of a2 when a1= 1√

2
and λ = 1. This

case is still in agreement with the optimal jamming signal
distribution because the proof of the optimal jamming signal
pdf only says that the optimal jamming signal distribution can
be represented by a randomization of at most two different
signal levels. Also recall that a = |<(j̄)| = |=(j̄)|. Thus,
<(j̄) = =(j̄) = ± 1√

2
.

From [23], it is well known that the entropy of any two-
point distribution is maximized when each of the points is
equally likely. Therefore the jammer sends a 1√

2
symbol

on the in-phase or the quadrature dimension with prob-
ability 1

2 and − 1√
2

also with probability 1
2 . Therefore

the optimal jamming signal distribution is QPSK when√
SNR

d2
min

2 <
√

JNR tanh
(

2

√
SNR

d2
min

2 JNR
)

.
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√
2SNRd2

minJNRexp

(
− SNRd2

min

2

)
<
√

1− λopt

{
exp

(
−

(√
SNR

d2
min

2
−

√
JNR

(1− λopt)

)2)

− exp

(
−

(√
SNR

d2
min

2
+

√
JNR

(1− λopt)

)2)}
, (9)

Theorem 2: {a1, a2} =

{
0, 1√

2(1−λopt)

}
is the opti-

mal jamming signal along any signaling dimension when
∂pe(λ,a1,SNR,JNR)

∂a1
|a1=0 = 0 and ∂2pe(λ,a1,SNR,JNR)

∂a2
1

|a1=0 < 0

i.e., pe has a maxima at a1 = 0. λopt is obtained by solving
for λ in the equation ∂pe(λ,a1,SNR,JNR)

∂λ |a1=0 = 0 and also
satisfying (9).

Proof: As mentioned earlier, a1=0 is a solution for
∂pe(λ,a1,SNR,JNR)

∂a1
= 0. When this is true, the opti-

mal value of λ denoted by λopt is obtained by solving
∂pe(λ,a1,SNR,JNR)

∂λ |a1=0 = 0. Further, it can be proved that
∂2pe(λopt,a1,SNR,JNR)

∂a2
1

|a1=0 will be < 0 only when λopt satis-

fies (9). By symmetry
{

1√
2λopt

, 0
}

is also a solution. Such a

solution is also known as on-off keying since the jammer sends
power using only one of the two possible signal levels, either
a1 or a2. Such a jamming signal will help to increase the pe
in cases where the jammer has limited power. The significance
of this solution will be explained in more detail shortly.

Remark 4: When on-off keying is optimal, it can be shown
that pe is equivalent to the probability of error achieved when
the jammer uses QPSK signaling and either transmits with
power PJ

λopt
or shuts off transmission with probability λopt and

(1−λopt) respectively. Such a jamming signal is equivalent to
a pulsed jammer albeit modulated by a QPSK signal rather
than AWGN [9], [24]. Exploiting this equivalence, we next
explicitly characterize the range of SNR and JNR where on-
off keying/pulsing is optimal.

Theorem 3: For a given SNR and JNR, the optimum
strategy for a QPSK modulated jammer is to use two different
power levels, one of which is 0, when JNR ≤ ĴNR, and each
of these power levels is used with a probability depending on
the victim signal parameters. However, if JNR > ĴNR then
the optimal strategy is to employ continuous jamming. ĴNR
is defined by a unique jamming signal power P̂J and signal
power PS such that pe is convex when JNR ≤ ĴNR and
concave elsewhere. In other words, P̂J is an inflection point
for pe. Henceforth, such a jamming signal will be referred to
as the pulsed-jammer.

Proof: When QPSK is used as the jamming signal, it can be
shown that for the pe in (4), there exists a single inflection
point ĴNR such that pe is convex when JNR ≤ ĴNR and
concave elsewhere. When pe is convex, the error probability
can be increased by time sharing between two different power
levels (by Jensen’s inequality) [23] with probability ρ and
under the constraint that the average power is still PJ . Then,

TABLE I
OPTIMAL JAMMING SIGNAL LEVEL DISTRIBUTION AGAINST A 16-QAM

VICTIM SIGNAL, JNR = 10 dB.
a1, a2 INDICATE THE ABSOLUTE VALUES OF THE REAL AND IMAGINARY

PARTS OF THE JAMMING SIGNAL.

SNR λopt a1 a2

-2 1 1√
2

n/a
4 1 1√

2
n/a

10 1 1√
2

n/a
16 1 1√

2
n/a

19 0.4633 1.039 0
22 0.2304 1.473 0
25 0.1193 2.047 0
28 0.0625 2.828 0

the achievable pe when JNR ≤ ĴNR is given by

ρpe

(
1,

1√
2
,SNR,

JNR

ρ

)
+(1−ρ)pe

(
1,

1√
2
,SNR, 0

)
, (10)

where, the optimal value of ρ can be found by using the first
and second derivatives of (10). Since (10) is equivalent to the
pe obtained in Theorem 2, it is not hard to see that the optimal
value of ρ is given by λopt (discussed in Theorem 2). When
JNR ≥ ĴNR i.e., the concave region, the achievable pe is de-
scribed by pe

(
1, 1√

2
,SNR, JNR

)
(the QPSK jamming case)

which is indicative of continuous jamming. This concludes the
proof of the theorem.

Table III-B shows the optimal values of the three unknown
parameters against a 16-QAM victim signal for a general case
in which SNR R JNR (a1, a2 are defined earlier). Since the
in-phase and quadrature dimensions are equivalent in such a
coherent scenario, it is seen that the optimal jamming signal is
the same along any signaling dimension as mentioned earlier.

Remark 5: From Table III-B, it can be seen that QPSK is
the optimal jamming signal only until a certain SNR beyond
which a pulsed-QPSK jammer is optimal. Further, the pulsing
duration decreases as the SNR increases, which indicates that
the jammer is transmitting only for a fraction of the time.
However, it jams the receiver with increased signal levels in
an attempt to compensate for the increased SNR. Notice that
the pulsed jamming signal is not a shifted version of the input
signal which is different from the results in [13] because we
have considered the effects of the additional AWGN noise
introduced by the channel. Further, it is easy to show that
the sign detector (for example, in the case of binary inputs) is
no longer the maximum likelihood detector when the jamming
signal is obtained by using the foregoing analysis. This finding
is again in contrast to the conclusions made in [13], mainly
because the additional AWGN noise introduced by the channel
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Fig. 1. Comparison of various jamming techniques against a 16-QAM
modulated victim signal, JNR = 10 dB.

is also considered in the present work. However, notice that the
optimal maximum likelihood detection at the victim receiver in
the presence of jamming is not the focus of this present work.

The pe for the 16-QAM victim signal under various jam-
ming scenarios is shown in Fig. 1. Here 16-QAM (QPSK)
jamming refers to a randomly generated 16-QAM (QPSK)
modulated jamming signal, and AWGN jamming refers to a
zero-mean white Gaussian noise jamming signal with variance
PJ . It is well known that the entropy of a two-level distribution
is maximized when λ = 0.5 [23]. A new optimization problem
(extending the one in (5) and (6)) is solved by introducing an
additional constraint where λ = 0.5. We call such a jamming
scenario as maximum entropy jamming. While maximum en-
tropy jamming is better than QPSK jamming, it is worse than
the optimal jamming as the constraint λ = 0.5 does not allow
the optimization algorithm to explore the pulsed jamming
solution. For a fair comparison, the jamming performance of
a pulsed jammer modulated with an AWGN signal [9] is also
shown in Fig. 1. The optimal pulsing ratio λAWGN

opt for the
pulsed AWGN jamming signal against any M -QAM victim
signal is obtained by using the first and second derivatives
with respect to λ of

(
1− 1√

M

)[
λerfc

(√
SNR

(1 + JNR
λ

)

dmin

2

)
+ (1− λ)erfc

(
√
SNR

dmin

2

)]
.

AWGN-based pulsed jamming converts the exponential
relationship between pe and SNR to a linear one [9]. This
also holds true for the case of the optimal jamming as seen in
Fig. 1. This is similar to the behavior of pe in a Rayleigh fading
channel where it is inversely proportional to SNR. Intuitively,
a symbol erased due to a deep fade is similar to the case where
a symbol is disrupted by jamming. Thus, the optimal jammer
is capable of generating a fading channel-like scenario in an
AWGN channel.

In summary, we first showed that the optimal jamming sig-
nal distribution has a discrete distribution with only two mass
points along any signaling dimension. Specifically, we showed
that the signal levels of the in-phase or quadrature parts of the
jamming signal will obey a two-point distribution. Using this
result to address jamming against a M -QAM victim signal, we
presented three Theorems, where Theorem 1 shows that QPSK

is the optimal jamming signal against a M -QAM victim signal

when
√

SNR
d2

min

2 <
√

JNR tanh
(

2

√
SNR

d2
min

2 JNR
)

, Theo-
rems 2 and 3 show that pulsed QPSK is an optimal jamming
signal when JNR ≤ ĴNR. We used numerical optimization
techniques to obtain a solution over all SNR, JNR, based on
which it is conjectured that pulsed-QPSK is the optimal signal
to jam any M -QAM modulated victim signal.

TABLE II
OPTIMAL JAMMING SIGNALS IN A COHERENT SCENARIO.

Victim signal Modulation scheme of
pulsed jamming signal

BPSK BPSK
QPSK QPSK
4-PAM BPSK

16-QAM QPSK

Remark 6: Since the two dimensional M -QAM constella-
tions were analyzed by treating them as two orthogonal

√
M -

PAM signals, the above analysis can be directly simplified for
one dimensional signaling constellations such as BPSK, 4-
PAM among others. Table II summarizes the optimal jamming
signals against commonly used digital amplitude-phase mod-
ulated constellations. These results indicate that matching the
jamming signal to the victim signal i.e., using the same signal
as the victim is not always optimal.

IV. FACTORS THAT MITIGATE JAMMING

In this section, jamming is studied when the victim signal
is not coherent (i.e., phase or time asynchronous) with the
jamming signal when they reach the victim receiver. From
a jammers’ perspective, these non-idealities in the channel,
specifically differences between the victim and jamming sig-
nals will lower the impact of jamming at the victim receiver.
For example, consider a scenario where the victim signal uses
BPSK and the jammer also sends a BPSK signal. If the channel
introduces a 90◦ phase offset between these two signals, then
the jammers’ signal does not have any impact on the victim
signal (as the receiver only demodulates the projections of the
signal received along the in-phase dimension).

If the phase/time shift between the victim signal and the
jamming signal is known ahead of time to the jammer, it
can compensate for this in the jamming signal before it is
sent. However, this may be difficult to achieve in a real time
communication system. Hence, in this section, we consider
scenarios where the jammer is unaware of (or unable to
compensate for) this random phase or time offset introduced
by the wireless channel and thus treats it as a random variable.
From a jammers’ perspective it is necessary to optimize its
signal distribution across all random offsets introduced by
the channel. We also consider the case when the jammer is
not perfectly aware of the communication and jamming signal
power levels as seen at the victim receiver.

A. Non-Coherent Jamming

In this sub-section, jamming behavior is studied when the
jammers’ signal is not coherent (i.e., phase asynchronous) with
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pe(λ, j̄, SNR, JNR) ≈

(
1− 1√

M

)
1

2

[
erfc

(
√

SNR
dmin

2
+
√

JNR(<j̄ cos(φ)−=j̄ sin(φ))

)
+

erfc

(
√

SNR
dmin

2
−
√

JNR(<j̄ cos(φ)−=j̄ sin(φ))

)]
. (13)

TABLE III
OPTIMAL NON-COHERENT JAMMING SIGNAL LEVEL DISTRIBUTION

AGAINST A 16-QAM VICTIM SIGNAL, JNR = 10 dB. a1, a2 INDICATE
THE ABSOLUTE VALUES OF THE REAL AND IMAGINARY PARTS OF THE

JAMMING SIGNAL.

SNR λopt a1 a2

-2 1 1√
2

n/a
4 1 1√

2
n/a

10 1 1√
2

n/a
16 1 1√

2
n/a

19 1 1√
2

n/a
22 0.185 1.642 0
25 0.094 2.304 0
28 0.049 3.211 0

the victim signal. With a random phase offset, the victim signal
is given by

ȳk =
√
PS s̄k +

√
PJexp (iφ) j̄k + n̄k, k = 0, 1, . . . ,K, (11)

where φ indicates the phase offset between the victim signal
and the jamming signal at the victim receiver and is treated as
a uniform random variable between 0 and 2π, and i =

√
−1.

As in Section III, the optimization problem for the jammer is
given by

max
fJ̄

EfJ̄

[
Eφ

(
pe (j̄, PS , PJ)

)]
s.t. E(||j̄||2) ≤ 1. (12)

The optimal jamming signal distribution along any signaling
dimension in the non-coherent scenario is obtained by follow-
ing the analysis in Section III and is described below. Without
loss of generality, we present the analysis for jamming against
a M -QAM victim signal as done in Section III.

Even in the non-coherent case, the M -QAM signal can
be analyzed by considering it as two orthogonal

√
M -PAM

signals. However, in this case due to the random phase offset
between the jammers’ signal and the victim signal, projections
of the jammers’ signal along each signaling dimension must be
considered which is different from the analysis in Section III.
The pe of a M -QAM signal along the in-phase dimension
when there is a jamming signal j̄ and a random phase offset
φ, is given by (13). A similar expression holds true for the
quadrature signaling dimension. Using (13) and solving the
optimization problem in (12) by following the analysis in
Section III gives the optimal jamming signal level distribution
shown in Table IV-A against a 16-QAM victim signal (we
used the numerical optimization toolbox in Matlab to solve
the optimization problem). Even in this case a1, a2 indicate
the possible absolute values of the real and imaginary parts of
the jamming signal j̄.
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Fig. 2. Comparison of jamming techniques against a 16-QAM victim signal
in a non-coherent (random phase offset) scenario, JNR = 10 dB.

It is interesting to see that once again QPSK (recall that in
the coherent scenario, the optimal jamming signal distribution
along any signaling dimension was defined by ±a1 where a1

and −a1 are both transmitted with equal probability, the same
definition holds true even in the non-coherent scenario) is the
optimal jamming signal until a certain SNR. Beyond this limit,
pulsed-QPSK is the optimal jamming signal. This behavior
is similar to the observations in Section III. When pulsing is
optimal, the non-zero signal level is given by its corresponding
probability as 1√

2λopt

or 1√
2(1−λopt)

, which in other words

means that a QPSK modulated jammer with pulsing ratio
λopt is the optimal jamming signal. In Table IV-A, notice that
the optimization solver returned equal values for the jamming
signal levels along the in-phase and quadrature dimensions.
This is due to the symmetry along these dimensions in the
case of 2-dimensional signaling which holds true irrespective
of whether the jamming signal is coherent or non-coherent
with the victim signal.

Similar to the coherent scenario (see Theorem 3), pulsed-
QPSK can be shown to be optimal when JNR ≥ ĴNR where
ĴNR is the inflection point of pe with respect to JNR. As the
presence of a phase offset reduces the jamming effect, ĴNR in
the non-coherent case is higher when compared to ĴNR in a
coherent scenario. In other words, for a given JNR the SNR at
which pulsing is optimal increases (as seen in Table IV-A) in a
non-coherent scenario in comparison to the coherent scenario
which was discussed earlier. The performance of the various
jamming signals against a 16-QAM victim signal is shown
in Fig. 2. Although the pe achieved by the optimal jamming
signal (or pulsed-QPSK) is less when compared to the coherent
scenario (due to phase mismatch), it is still higher than the pe
achieved using pulsed-AWGN jamming.

Similar to the coherent scenario, the analysis for the M -
QAM constellations can be extended to any specific modula-
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tion scheme in a non-coherent scenario. The optimal jamming
signals in such a phase asynchronous scenario against the
commonly used modulation schemes such as BPSK, 4-PAM,
QPSK and 16-QAM are still given by Table II.4 However,
the pulsed jamming duration of these optimal jamming sig-
nals changes between the coherent and non-coherent (phase
asynchronous) scenarios as seen from Tables III-B and IV-A.
As seen from Fig. 2, the gain in the SNR required to achieve
a target pe when compared to the coherent scenario, decreases
by 1-2 dB due to this phase mismatch.

B. Symbol Timing Offset

Similar to the phase offset, although the jammer identifies
the modulation scheme and is aware of the symbol interval
used by the victim signal, it is difficult to be time aligned due
to the unknown delays introduced by the wireless channel.
In this sub-section we consider the jamming performance
when the victim signal and the jammers’ signal are not time
synchronized with each other. Note that, in general, phase
offset and symbol timing offset can occur together in practical
wireless communication systems, but we do not consider both
these non-idealities together in this paper due to the complex-
ity involved in optimizing the jamming signal. However, the
framework developed thus far is still applicable and can be
extended to such complex scenarios. Below, we focus on the
effects of timing offset on the jamming performance.

The low pass equivalent of the jammed victim signal after
matched filtering is given by

yk =
√
PSsk +

√
PJ

∞∑
m=−∞

jmĝ(t−mT − τ) + nk,

k = 1, 2, . . . , (14)

where τ indicates the symbol timing offset/random delay
introduced by the channel, ĝ(t) is a Nyquist pulse at the output
of the matched filter given by ĝ(t) = g(t) ∗ g(t), where ∗
indicates the convolution operation. For 2-dimensional signals,
such as M -QAM, let ȳk = [<yk,=yk]T and along similar
lines define s̄k, j̄k and n̄k for all k = 1, 2, . . . ,K. Then (14)
is rewritten as

ȳk =
√
PS s̄k +

√
PJ

∞∑
m=−∞

j̄mĝ(t−mT − τ) + n̄k,

k = 1, 2, . . . , . (15)

By taking the pulse shape ĝ(t) to be zero for |t| ≥MT (in fact,
real implementations must truncate these pulses), the samples
{yk}Kk=1 are a function of the symbols {jm}M−1

i=−M+1.
Since the jammer is unaware of the time delay introduced,

it treats the timing offset as a uniform random variable in the
interval τ ∈ [0, T ). Under such scenarios, the average pe of a
M-QAM victim signal along any signaling dimension that the

4Even in the non-coherent scenario, BPSK continues to be the optimal
jamming signal against any M -PAM signal. This is because a) only the
projections of the received signal along the in-phase dimension are used
to decode the victim signal and b) QPSK is a sub-optimal jamming signal
because energy is wasted by transmitting along the quadrature dimension.
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Fig. 3. Comparison of jamming techniques against a 16-QAM victim signal
in the presence of timing synchronization errors, JNR = 10 dB.

jammer intends to maximize is given by

pe,τ,PAM (ĵ, PS , PJ) =

(
1− 1√

M

)
1

2

∑
j−M+1

. . .
∑
jM−1[

erfc

(√
SNRdmin

2 +
√

JNRĵ
√

2

)
+erfc

(√
SNRdmin

2 −
√

JNRĵ
√

2

)]
,

where averaging is performed over all the ISI terms in order to
evaluate the error rate and ĵ indicates either the in-phase part
or the quadrature part of

∑M−1
m=−M+1 j̄mĝ(t−mT − τ). The

optimization problem that the jammer must solve to obtain the
optimal jamming signal distribution is given by

max
fJ̄

EfJ̄

[
Eτ

(
pe,τ,PAM

(
ĵ, PS , PJ

))]
s.t. E(||j̄||2) ≤ 1,

(16)

where fJ̄ indicates the jamming signal distribution. Even in
this scenario, the optimal jamming signal distribution can be
shown to have two signal levels along any signaling dimension.
However, it can be seen from (14)-(16) that the optimization
problem in this scenario is more complicated compared to the
coherent and non-coherent scenarios due to the inter-symbol
interference (ISI) introduced by the incorrect sampling time
offset. Hence, in this section, we study the performance of the
optimal jamming signal obtained in Section III in the presence
of a random time delay introduced by the wireless channel.

Fig. 3 shows the error rate performance of the optimal
jamming signal in Table III-B against a 16-QAM victim signal
in the presence of time synchronization errors (M = 2 and
a roll-off factor of 0.65 for the raised cosine pulse shape).
It is seen that the pe achieved by the jamming signal in
Table III-B is lower as compared to the perfectly synchronized
scenario because of the ISI. However, it is seen that the pe
achieved by the jamming signal in Table III-B is still higher
than the pe achieved by the pulsed-AWGN jamming. Although
there may be specific cases where ISI helps the jammer to
increase the error rates by causing constructive interference
against the victim signal, on an average the random time delay
τ ∈ [0, T ] only reduces the impact of jamming (remember that
the modulation-based jamming signal can still result in a linear
decay of the error rate with respect to SNR). This is because



9

the timing offset essentially creates a multiple level jamming
signal (the overall effect of ISI translates into this multi-level
effect) which as we proved earlier is sub-optimal because a
two-level signal is the optimal jamming signal distribution.
This explains the lower error rates achieved in comparison
to a perfectly synchronous case and seems to approach the
performance of an AWGN jamming signal (as seen in Fig. 3
when τ ∈ [0, T ])

C. Signal Level Mismatch

When the jammer is not perfectly aware of the power
levels of the communication and the jamming signals i.e.,
PS and PJ at the victim receiver, the optimization problems
presented before in Section III do not result in the optimal
jamming signal distribution. Due to this uncertainty, the error
rate performance of the jamming signals shown in Table III-B
will be degraded. However, if the uncertainty in the knowledge
of PS or PJ is accounted for, then the jammer’s performance
can be significantly improved as will be shown below. For
ease of analysis, we assume that the jammer is not aware of
PS exactly. Notice that the error in the knowledge of PJ can
also be accounted for along similar lines. If ε is the error in
the jammer’s knowledge about PS , then the jammer assumes
that the received signal at the victim receiver is given by

ȳk =
√
PS + εs̄k +

√
PJ j̄k + n̄k, k = 0, 1, . . . ,K. (17)

To obtain the optimal jamming signal distribution under such
scenarios, the jammer solves the following optimization prob-
lem;

max
fJ̄

EfJ̄

[
Eε

(
pe (j̄, PS + ε, PJ)

)]
s.t. E(||j̄||2) ≤ 1. (18)
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Fig. 4. Comparison of jamming techniques against a 16-QAM victim signal
in the presence of signal level mismatch, JNR = 10 dB.

Notice that this optimization problem is similar to the
formulation in a phase-asynchronous scenario shown in (12).
Thus, following the same principles as earlier, the optimal
jamming signal can be shown to have a two-level distribu-
tion along any signaling dimension. As before, we use the
Matlab’s optimization toolbox to find the optimal jamming
signal distribution across all ranges of SNR and JNR. Fig. 4
shows the performance of the optimal jamming signal in
comparison to cases when the jammer is perfectly aware of
ε and can therefore perfectly evaluate the optimal jamming
signal distribution at any given time instant. Also shown are

the performance of the pulsed AWGN and pulsed QPSK
jamming signals when the jammer accounts for or ignores
the error ε. Specifically, in Fig. 4, the error ε was taken to be
distributed as zero mean Gaussian with variance proportional
to the signal power PS and SNR = PS/σ

2. It is seen that
when the error is accounted for, the jammer can still perform
better than a) a pulsed QPSK jamming signal that ignored ε
and b) the naive AWGN jamming signal.

V. JAMMING AN OFDM SIGNAL

In this section, we study the optimal jamming signal distri-
bution against OFDM-modulated wireless signals. The jammer
can easily identify whether the victim is using a single-carrier
or an OFDM-modulated signal by employing simple feature-
based classification techniques [25]. Under such scenarios,
we show that the optimal jamming signal is also an OFDM
modulated signal i.e., jamming in the frequency domain (by
this we mean that the jammer’s symbols are modulated onto
the sub carriers of the OFDM signal) is more effective in
comparison to jamming in the time domain.

Typically, most earlier literature considered AWGN jam-
ming signals to attack the victim (see the tutorial paper [17] for
more information), but as we show below this is sub-optimal.
This follows directly from the results presented in the previous
sections in the context of a single carrier system. By using
the optimal jamming signals obtained in this paper, innovative
power efficient jamming techniques such as cyclic prefix
jamming, preamble jamming among others can be performed.
However, this is not the major concern of this paper. In other
words, we are concerned with jamming data only and not
control or synchronization parts of the victim’s transmission.
For more information on efficient OFDM jamming attacks,
please refer to [17].

In an OFDM system, an IFFT operation converts the fre-
quency domain modulated symbols to time domain signals
before they are transmitted. The time domain OFDM symbol
s(l) is given by

s(l) =

Nsc∑
k=1

S(k) exp(j2πlk/Nsc), ∀0 ≤ l ≤ Nsc − 1, (19)

where S(k) is the frequency domain signal/symbol which is
typically a digital amplitude phase-modulated wireless signal,
such as M -QAM and Nsc are the total number of sub-carriers
used in the OFDM transmission. Assuming that the victim
signal passes through an AWGN channel (received power is
constant over the observation interval) while being attacked
by a time-domain jamming signal j(l), the received signal at
the victim receiver is given by

y(l) =
√
PSs(l) +

√
PJj(l) + n(l), (20)

where PS , PJ hold the same meaning as earlier. At the
receiver, the OFDM signal is passed through an FFT block
to recover the underlying frequency domain signal S(k) as

Y (k) =

Nsc−1∑
l=0

y(l) exp(−j2πkl/Nsc)
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Fig. 5. Comparison of jamming techniques against a OFDM-modulated 16-
QAM victim signal, JNR = 10 dB.

=
√
PSS(k) +

√
PJ

Nsc−1∑
l=0

j(l) exp(−j2πkl/Nsc) +N(k),

∀0 ≤ k ≤ Nsc − 1. (21)

Notice that (21) is similar to the single carrier scenario
discussed before in the Section III. For instance, when S(k)
is a M -QAM modulated victim signal, then based on the
analysis in Sections III and IV, the optimal jamming signal
J(k) =

∑Nsc−1
l=0 j(l) exp(−j2πkl/Nsc) is a pulsed-QPSK

signal. Therefore, this leads to the conclusion that the opti-
mal time-domain jamming signal j(l) is OFDM-modulated
with frequency-domain symbols J(k), whose distribution was
obtained earlier in Sections III, IV. Thus, all the findings of
the earlier sections in the context of a single carrier system
can also be extended to the case of OFDM signaling.

Fig. 5 shows the performance of the various jamming sig-
nals against OFDM-based 16-QAM modulated victim signal.
Specifically, each OFDM symbol consists of 64 subcarriers
with data modulated on only 52 subcarriers. Further, a cyclic
prefix of length 16 was appended to each OFDM symbol
in the simulations. Notice that the time-domain AWGN and
QPSK jamming signals achieve the same error rates because
the QPSK signal will also look similar to an AWGN signal
after the FFT operation at the victim receiver. It is also seen
that frequency domain jamming (with the same structure as
the victim signal i.e., 64 subcarriers with data modulated on
only 52 subcarriers and a cyclic prefix of length 16) performs
significantly better than time domain jamming and also the
frequency domain pulsed QPSK jamming signal achieves
a higher error rate than all other jamming signals. These
findings are in agreement with the results discussed earlier
in Section III. Also shown is the performance of the pulsed
QPSK jammer when the victim signal and the jamming signal
are non-coherent i.e., there is a phase-offset between these
signals at the victim receiver. In this case, the optimal jamming
signal is obtained by following the steps in Section IV-A. The
performance of the optimal jamming signal even in this case
is similar to that of the single carrier system.

It is well-known that frequency offset is a major problem
in OFDM signals in comparison to the timing offset. This is
because the presence of a cyclic prefix helps overcome the
effects of a timing offset introduced by the wireless channel.
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Fig. 6. Comparison of jamming techniques against a OFDM-modulated 16-
QAM victim signal in the presence of a frequency offset, JNR = 10 dB.

Moreover the effects of the frequency offset in OFDM-based
signals can be related to the effects of a timing offset in single
carrier systems. Therefore, the jamming performance in the
presence of a frequency offset between the victim and the
jamming signals can be related to the timing asynchronous
case in a single carrier system which was discussed before
in Section IV-B. A frequency offset between the jamming
and the victim signal leads to inter-carrier interference (ICI),
which similar to ISI in a single carrier system, degrades
the performance of the jamming signal with respect to the
error rates created at the victim receiver. Since optimizing
the jamming signal in the presence of a frequency/timing
offset is complex due to the presence of ICI/ISI, we study the
performance of the jamming signal obtained in the coherent
scenario when it is used in the presence of a frequency offset.

When the jamming and the victim signals are off by
an integer number of subcarrier spacings, the orthogonality
between the subcarrier’s of the jammer and the victim signals
remains intact due to the cyclic shift created by the receiver’s
FFT operation. Thus no ICI is created in this case and the per-
formance would be similar to that shown in Fig. 5. Hence, only
a fractional frequency offset, i.e., offsets less than a subcarrier
spacing, are considered in this analysis. Fig. 6 shows the error
rates achieved by the jamming signal when the jamming and
the victim signal are frequency asynchronous. As expected, the
error rate performance is degraded in comparison to the case
when the jamming and the victim signals are perfectly aligned
in terms of the frequency. Note that the performance of the
AWGN jamming signal will also be affected by a frequency
offset unlike the case when their performance is not impacted
by a phase offset between the jamming and the victim signals.

VI. THE CASE OF MULTIPLE JAMMERS

In this section, we analyze the error rates achieved by multi-
ple coordinating jammers attacking a single victim transmitter-
receiver pair. It is assumed that the total average power
available with the multiple jammers is the same as the average
power available with a single jammer that was studied in the
previous sections. When the jammers are coordinated, they
can jointly evaluate the optimal joint jamming signal distri-
bution that maximizes the probability of error at the victim
receiver. We show the superior performance of such a joint
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optimal jamming signal distribution by comparing it against
the cases where multiple jammers are un-coordinated and
hence employ the optimal single jamming signal distributions
obtained in previous sections. Further, these increased error
rates can be achieved by using only lower average power
levels at each jamming node which also helps in reducing
the jammer detection probability. The assumption that the
jammers can coordinate enables us to evaluate the maximum
possible error rates that can be created at the victim receiver
under a given average power constraint. In scenarios, where
such coordination is not possible, alternate techniques such as
online learning [26]-[28] can be employed. In this paper, we
restrict to the cases where coordination between the multiple
jammers is possible, for example by communicating via a side
channel.

The received signal at the victim receiver when N coherent
and synchronous jammers attack a single victim signal s, is
given by

ȳk =
√
Pss̄k +

N∑
i=1

√
PJ(i)j̄i,k + n̄k, k = 1, 2, . . . ,K (22)

where ȳk, s̄k, n̄k were defined earlier and j̄i,k indicates the
jamming kth jamming symbol sent by the ith jammer such that
E(||j̄i||2) ≤ 1. Here, PJ(i) is the power of the ith jamming
signal at the victim receiver and

∑
i PJ(i) = PJ , i.e., the total

average power available with the multiple jammers is the same
as available with a single jammer considered in the previous
sections. For ease of exposition, we show the analysis for the
optimal jamming signal along any one signaling dimension
which can be easily extended to any dimension i.e., to consider
any standard modulation schemes following the analysis done
in the previous sections.

By letting ji indicate the in-phase or the quadrature parts
of the jamming signal, the pe along any signaling dimension
for an M -QAM signal, is given by (4) by replacing j in
(4) with

∑N
i=1

√
PJ(i)ji. Since ji indicates either the in-

phase or the quadrature components of the jamming signal,
we have the following average power constraint E(j2

i ) ≤ 1
2 .

Hence, when the jammers can coordinate and try to maximize
the error rate at the victim receiver, they solve the following
optimization problem to obtain the optimal jamming signal
along any signaling dimension,

maxE(pe(j1, . . . , jN )) s.t. E(j2
n) ≤ 1

2
, n = 1, 2, . . . , N.

where the expectation is taken with respect to
fj1,j2,...,jN (j1, . . . , jN ), which denotes the joint optimal
jamming signal distribution of all the jammers that intend to
attack the victim.

Remark 7: When the jammer’s cannot coordinate with each
other, then the joint jamming signal distribution along any
one signaling dimension fj1,j2,...,jN (j1, . . . , jN ) is given by∏N
i=1 fJi(ji), where the jamming signal distribution for the

ith jammer fJi(ji), is given by the optimal single jammer
distribution derived earlier in Sections III-V. We show that this
results in a sub-optimal jamming performance when compared
to scenarios where the jammer’s can coordinate.

The following theorem establishes the structure of the joint
optimal jamming signal distribution fj1,j2,...,jN (j1, . . . , jN )
along any signaling dimension.

Theorem 4: The joint optimum jamming signal distribution
fj1,j2,...,jN (j1, . . . , jN ) along any signaling dimension, when
N jammers attack a single victim transmitter-receiver pair is
defined by N + 1 levels.
Proof: Define set U as

U =
{

(u1, u2, u3, . . . , uN+1) : u1 = pe(j1, j2, . . . , jN ),

un+1 = j2
n, ∀n = 1, 2, . . . , N

}
(23)

Since pe is continuous, the mapping defined by
(pe(j1, j2, . . . , jN ), j2

1 , j
2
2 , . . . , j

2
N ) is also continuous in

the domain |jn| ≤ jmax, ∀n = 1, 2, . . . , N , where jmax

indicates the maximum signal level that can be sent by
the jammers. Such an assumption is common for wireless
communication systems because arbitrarily large signal levels
cannot be generated by practical transmitters.

Now, U is a compact set, because the continuous image of
a compact set is also compact. Let V represent the convex
hull of U . Since U is compact, V is closed with dimensions
not exceeding N + 1 as it is a subset of (R+)N+1.

Now, define a set W as

W =
{

(w1, w2, w3, . . . ,WN+1) :

w1 =

∫ ∫
pe(j1, j2, . . . , jN )fj1,j2,...,jNdj1dj2 . . . djN ,

wn+1 =

∫ ∫
j2
nfj1,j2,...,jNdj1dj2 . . . djN ,

∀n = 1, 2, . . . , N
}
, (24)

where fj1,j2,...,jN (j1, . . . , jN ) is the joint pdf of the jamming
signals used by the coordinated jammers. Notice that the
elements of W are the expected values of the elements of U ,
where expectation is taken with respect to the joint jamming
signal distribution fj1,j2,...,jN .

It is known from previous results that, if a random variable
Θ takes values in a set Ω, then its expected value E(Θ) takes
values in the convex hull of Ω [20], [29, Appendix 4.B]. This
indicates that W is in the convex hull V of the set U . In other
words, we have W ⊆ V .

We will now show that V ⊆ W . Since V is the convex
hull of U, each element inside V can be easily expressed as
v =

∑L
`=1 λ`(pe(j

(`)
1 , j

(`)
2 , . . . , j

(`)
N ), j

(`)
1 , j

(`)
2 , . . . , j

(l)
N ) with∑

` λ` = 1 and λ` > 0. Here j(`)
i indicates the `th point of

the the jamming signal ji. See that set W has an element
equal to v for fj1,j2,...,jN =

∑L
`=1 λ`δ(j − j(`)) where

j = (j1, j2, . . . , jN ) and j(`) = (j
(`)
1 , j

(`)
2 , . . . , j

(`)
N ). Therefore,

every element of V is also a subset of W which leads to
V ⊆W . Using the above two results we have, V = W .

By using the Caratheodory’s theorem [18], we have that any
point inside V or W can be expressed as a convex combination
of at most L = N + 2 points that belong to U . Now since
the jammers intend to maximize pe, the optimal value lies on
the boundary of V which can be expressed by at most N + 1
elements that belong to U . Thus the optimal pdf fj1,j2,...,jN is
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described by N+1 vectors namely {(j(`)
1 , j

(`)
2 , . . . , j

(`)
N )}N+1

`=1

such that
N+1∑
`=1

λ`(j
(`)
n )2 ≤ 1

2
, ∀n = 1, 2, . . . , N. (25)

This concludes the proof of the Theorem.
Remark 8: When a single jammer attacks a victim receiver,

i.e., the case of N = 1 given in (22), then Theorem 4 gives
the result mentioned earlier in Section III-A regarding the
optimality of a two-level jamming signal distribution along
any signaling dimension.

By following the procedure in Section III, and using the
structure of the optimal jamming signal distribution in Theo-
rem 4, we obtain the error rates against standard digital ampli-
tude phase modulated victim signals. By following the analysis
in Section IV, the optimum jamming signal distribution in the
presence of non-idealities in the channel can also be obtained.
Numerical results that show the performance of the multiple
jamming signals is discussed next.

A. Results

Fig. 7 shows the error rates achieved by various jamming
techniques when N jammers attack a single victim node. In
all the cases, the overall average power used by the jammers
is restricted to PJ in order to compare with the error rate
performance of a single jammer and each jammer has equal
power equal to PJ

N . It is clearly seen that unless both the
jammer’s coordinate, the gains in pe are not achievable. By
coordinate, we mean that the jammers should pulse at the
same time when pulsing is optimal i.e., all the jammers should
transmit at the same time by employing the optimal joint
jamming signal distribution (which in this paper is obtained by
using the optimization toolbox in Matlab). It is worth noticing
that a 3dB SNR gain is achieved when the number of jammers
is doubled i.e., 3dB higher SNR is required at the victim to
attain the same error rate.

When coordination is not possible, the multiple jammer
performance is limited and it can only achieve the error rates
achieved by a single jammer. Notice that in the ranges where
QPSK jamming is optimal for a single jammer, the error
rates achieved by two un-coordinated jammers is degraded.
This is because a positive signal sent by one jammer can be
cancelled by a negative signal that may be sent by the other un-
coordinated jammer. However when the jammers are pulsing,
the probability that their pulsing instants may match is on the
order of ρ2 (ρ being the pulse jamming probability) which is
small, and hence there is a small probability that their signals
may cancel each other. This is why the error rates achieved
by the un-coordinated jammers in the pulsing region matches
the error rate achieved by a single jammer. As expected, the
performance of all these jamming signals is better than the
naive AWGN jamming signal.5 Also shown is the performance
of the optimum jamming signal distribution when the jammers
are non-coherent (phase offset between the signals) when their
signals reach the victim receiver. As expected the performance

5Note, that the performance of multiple pulsed AWGN jammers will
coincide with the performance of a single pulsed AWGN jamming signal.

of the joint optimal non-coherent jamming signal is degraded
in comparison to the coherent case.
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Fig. 7. Comparison of jamming techniques when multiple jammers attack a
single 16-QAM modulated victim signal, JNR=10dB.

VII. CONCLUSION

In this paper, we characterized the optimal statistical distri-
bution for power-constrained jamming signals that jam digital
amplitude-phase modulated constellations in an AWGN chan-
nel in both single carrier and OFDM-based wireless systems.
The analysis in this paper shows that modulation-based pulsed
jamming signals are optimal in both coherent and non-coherent
(phase asynchronous) scenarios. As opposed to the common
belief that matching the victim signal (correlated jamming)
increases confusion at the victim receiver, our analysis shows
that the optimal jamming signals match standard modulation
formats only in a certain range of signal and jamming powers.
Beyond this range, either binary or quaternary pulsed jamming
is the optimal jamming signal. An interesting relationship
between these optimal jamming signals and the well-known
pulse jamming signals discussed in the context of spread
spectrum communications was illustrated. As expected, the
performance of these optimal jamming signals was seen to
be degraded when the victim and the jamming signals are
not phase or time synchronous or when it does not have
perfect knowledge of the power levels of the victim and
the jamming signals although the optimal jamming signal
distributions don’t change. Against OFDM-based signaling, it
was observed that OFDM-based jamming signals that use the
optimal jamming signal distributions obtained in single carrier
scenarios are optimal and that their performance is degraded in
the presence of channel non-idealities such as residual carrier
frequency offset. Upon extending this analysis to a multiple
jammer scenario, it was found that gains in terms of the
error rate at the victim receiver are possible only when the
multiple jammers are perfectly coordinated, otherwise multiple
jammers can only match the impact of a single jammer. The
optimal jamming signal distributions against practical wireless
signals that employ error correction coding techniques is being
investigated.
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