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Abstract—We bring together two research topics which have
been the focus of significant research individually: modula-
tion classification and iterative receiver design. In this work,
these topics are joined within the framework of factor graphs
which provide a unified approach to representing a variety of
algorithms, especially iterative algorithms. Specifically, in this
paper we present a factor graph which incorporates modulation
classification into the iterative receiver structure. The proposed
iterative receiver applies message passing on the factor graph
to approximate the optimal solution to joint modulation classi-
fication, demodulation, and decoding. This results in a classifier
which treats feedback from the decoder as a priori probabilities
for the coded bits. We show that the proposed receiver is
able to achieve significant performance gains over a receiver
which performs maximum likelihood classification separately
from demodulation and decoding.

I. INTRODUCTION

Traditionally, receivers have been designed to complete

tasks such as synchronization, channel estimation, demodula-

tion, and decoding in a sequential fashion. Optimal maximum

a posteriori (MAP) or maximum likelihood (ML) detection

of the information bits requires that these tasks be completed

jointly which is prohibitively complex. The term “iterative re-

ceiver” refers to a communication receiver in which the MAP

or ML estimate of the transmitted message is approximated

using an iterative algorithm (i.e., using the turbo principle [1]).

In the context of turbo codes, empirical results have shown that

iterative decoding provides performance near the Shannon ca-

pacity bound [2]. Iterative algorithms for joint synchronization

and decoding have been shown to achieve performance near

that of decoding with perfect synchronization [3]. Significant

contributions have been made to iterative receiver design in

the areas of channel estimation [4], [5], equalization [6], and

synchronization [3], [7], [8]. Numerous concepts from these

areas were joined together in the work by Wymeersch [9].

In this work, we propose incorporating automatic modula-

tion classification into the iterative receiver structure. To the

best of our knowledge, this concept has not been previously

explored. Adaptive modulation systems are attractive because

they provide a means of optimizing link throughput accord-

ing to channel conditions. Generally, information about the

selected modulation scheme must be conveyed to the receiver

which wastes bandwidth and energy. In order to avoid this loss,

it is desirable that the receiver have the ability to automatically

classify the modulation. Automatic modulation classification

has also been the focus of significant research effort [10].

The concept behind the proposed iterative receiver is to

improve classification by exploiting extrinsic information ob-

tained from soft decoding. The extrinsic information from the

soft decoder is treated as a priori coded bit probabilities (or

equivalently the symbol probabilities). This is in contrast to

past research into ML classification in which the symbols

are assumed to be equally likely a priori. ML modulation

classification with equally likely symbols has been shown to

have arbitrarily low probability of error when the number of

symbols used by the classifier goes to infinity [11]. In this

work we consider relatively short frame lengths and low signal

to noise ratio (SNR). We demonstrate through simulation,

that the iterative receiver achieves significant performance

gains over ML classification performed separately from de-

modulation and decoding which we will term the “traditional

receiver”.

Joint modulation classification and decoding requires a

receiver structure which supports each modulation scheme

simultaneously. Factor graphs provide a useful tool in con-

structing such a system. The sum-product algorithm is a

message passing algorithm for computing marginals on a

factor graph [12]. We implement the sum-product algorithm

on the factor graph to iteratively solve the joint problem.

In Section II we present background on the system model,

factor graphs, and ML classification. In Section III we present

the proposed iterative receiver. Simulation results are presented

in Section IV and conclusions are given in Section V.

II. BACKGROUND

A. System model

We consider a communication system which uses bit inter-

leaved coded modulation (BICM) and may employ one of M
amplitude-phase modulation schemes. The number of symbols

K in a transmitted frame is fixed and the number of coded

bits is allowed to vary according to the selected modulation.

In order to handle the variable number of coded bits, the

length of the channel encoder is set to provide K coded output

bits and the bit interleaver is set to interleave K bits at a

time. In this way a single encoder and a single bit interleaver

are used for BPSK. In general, when the transmitter uses a

modulation with a set of S constellation points, Z = log2 S
encoder/interleaver blocks are required. This structure for the

encoder and interleaver makes it possible to design a receiver

which can incorporate the de-interleaving and decoding of
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Fig. 1. Diagram of the transmitter structure for 64QAM

each modulation within a single structure. As an example, the

diagram of the transmitter for 64QAM is shown in Fig. 1.

The message sequence is divided into Z blocks bz , each of

which is the input to one of the encoders. The output of the

zth encoder cz is applied to the zth bit interleaver. The output

of the bit interleaver dz is a pseudo-random permutation (π)

of the input bits. We denote the entire block of informa-

tion, coded, and interleaved bits as b = [b1,b2, . . . ,bZ ],
c = [c1, c2, . . . , cZ ], and d = [d1,d2, . . . ,dZ ], respectively.

The kth bit from the output of each bit interleaver is denoted

d:,k = [d1,k, d2,k, . . . , dZ,k] and is passed to the modulator in

order to generate symbol yk. Within the modulator the input

bits are interleaved. We call this the “intra-symbol interleaver”

and we include it so that the net result of the bit interleavers

and the intra-symbol interleaver is to fully interleave the coded

bits in keeping with the BICM design of Caire et. al. [13] while

maintaining the separate encoder and bit interleaver blocks.

The intra-symbol interleaver mapping is generated randomly

for each symbol and is denoted ψm,k where m refers to the

modulation scheme. The modulator employs Gray labeling.

The modulator generates symbols yk from a unit energy

constellation E[|yk|
2] = 1. We assume a system in which

the combined response of the pulse shaping filter and re-

ceiver’s matched filter satisfies the Nyquist condition for zero

intersymbol interference. In order to test the concept of the

proposed receiver, we simulate transmission of the signal over

an additive white Gaussian noise (AWGN) channel. After

matched filtering, the signal is sampled at the symbol rate

to generate a vector of complex valued samples denoted by

r = [r1, r2, . . . , rK ]T . The complex samples are comprised

of symbols and noise as given by r = y + n where

y = [y1, y2, . . . , yK ] and we assume that the noise n is a

vector of independent and identically distributed (iid) complex

Gaussian random variables. The noise power is denoted σ2
N

and is assumed to be known.

B. Factor graphs and the sum-product algorithm

A factor graph is a graphical model which visually rep-

resents the factorization of a function. For our purposes the

functions are joint probability density functions (f ) or joint

probability mass functions (p). These functions can be factored

by exploiting the independence and/or conditional depen-

dencies among the variables. Consider an example function

f(x1, x2, x3, x4, x5) which can be factored as follows:

f(x1, x2, x3, x4, x5) =f1(x1)f2(x1, x2, x3)

· f3(x3, x4)f4(x4, x5). (1)

A Forney style factor graph [12] is constructed from nodes and

edges where nodes represent the factors fk (k = 1, 2, 3, 4) and

edges represent the variables xn (n = 1, 2, 3, 4, 5). A variable

edge is connected to a factor node if the variable appears as

an argument of the factor. The factor graph of (1) is shown in

Fig. 2.

µf4→x4

f1 f2 f3 f4

x1 x3 x4

x2 x5

Fig. 2. Example factor graph

We are interested in computing marginals from a joint

distribution. The marginal of the variable x1 in our example

is expressed as

fX1
(x1) =f1(x1)

(

∑

x2,x3

f2(x1, x2, x3)

·

(

∑

x4

f3(x3, x4)

(

∑

x5

f4(x4, x5)

)))

. (2)

The sum-product algorithm is used to efficiently compute a

marginal of a distribution by making local summations at the

nodes of the factor graph and by passing these summations in

the form of “messages” along the edges of the graph. Messages

are labeled according to the node and edge they are associated

with and are functions of the edge variable. For example, the

message from node f4 to variable x4 is denoted µf4→x4
(x4)

and is given by

µf4→x4
(x4) =

∑

x5

f4(x4, x5). (3)

It can be seen from (2) that the summation in (3) contains all

the information about x5 and f4 that is necessary for comput-

ing the marginal fX1
(x1). The message µf4→x4

(x4) is used in

the summation at node f3 to generate the message µf3→x3
(x3)

and this process is continued. Finally, the marginal fX1
(x1) is

given by the multiplication of the messages in both directions

on edge x1 expressed as fX1
(x1) = µf1→x1

(x1) ·µf2→x1
(x1).

For a complete introduction to factor graphs and the sum-

product algorithm please refer to [12].

C. Maximum Likelihood Classification

Let Hm denote the hypothesis that the received frame

employs the mth modulation scheme. For an observation of r,

the MAP modulation class is the class Hm which maximizes

the probability P[Hm|r]. When the modulations are equally



likely a priori, the MAP and ML classifiers are equivalent as

given by [14]

P[Hm|r] =
f(r|Hm)P[Hm]

f(r)
∝ f(r|Hm) (4)

where we are concerned with the maximum (not the actual

probabilities) so multiplicative constants can be ignored.

It is assumed that the symbols are independent [11]. Due to

the assumption of iid noise samples and independent symbols,

the likelihood function f(r|Hm) can be expressed by the

product [11]

f(r|Hm) =
K
∏

k=1

f(rk|Hm). (5)

Let sm,l denote the lth constellation point of the mth modula-

tion and let Sm denote the total number of constellation points

in modulation m. The distribution f(rk|Hm) is expressed as

a marginalization over the joint distribution f(rk, sm,l|Hm)
[11] which produces

f(r|Hm) =

K
∏

k=1

Sm
∑

l=1

f(rk|sm,l,Hm)P[sm,l|Hm]

=

K
∏

k=1

Sm
∑

l=1

1

πσ2
N

exp

(

−
1

σ2
N

||rk − sm,l||
2

)

1

Sm

∝

K
∏

k=1

1

Sm

Sm
∑

l=1

exp

(

−
1

σ2
N

||rk − sm,l||
2

)

(6)

where we assume that all symbols within a modulation are

equally likely (p(sm,l|Hm) = 1/Sm). From (6) we can write

the ML classifier as follows

HML = argmax
Hm

K
∏

k=1

1

Sm

Sm
∑

l=1

exp

(

−
1

σ2
N

||rk − sm,l||
2

)

.

(7)

The result in (7) is used for the traditional receiver and will

also be useful to verify the sum-product algorithm on the

iterative receiver in Section III-B.

III. JOINT DECODING AND CLASSIFICATION

The joint probability density function of the presented

system model can be factored into several conditional and

marginal distributions as given by

f(b, c,d,y, r,m)

= f(r|y)p(y|d,m)p(m)p(d|c)p(c|b)p(b). (8)

where r is the observed sample vector. The modulations are

equally likely a priori: p(m) = 1/M . The likelihood function

of the information bits can be determined (up to a scaling

factor) as the marginalization of (8) over c, d, y, and m. This

marginalization is expressed as

f(r|b) ∝ f(r,b)

=
∑

c,d,y,m

f(r|y)p(y|d,m)p(m)p(d|c)p(c|b)p(b)

= p(b)
∑

c

p(c|b)
∑

d

p(d|c)
∑

y,m

f(r|y)p(y|d,m)p(m).

(9)

From the likelihood function of (9) we can determine the

ML estimate of the information bits. In a similar way, the

likelihood function of the modulation can be determined from

the marginalization of (8) over b, c, d, and y as given by

f(r|m) ∝ f(r,m)

=
∑

b,c,d,y

f(r|y)p(y|d,m)p(m)p(d|c)p(c|b)p(b)

= p(m)
∑

y

f(r|y)
∑

d

p(y|d,m)
∑

c

p(d|c)
∑

b

p(c|b)p(b).

(10)

The expression for the likelihood function of the modulation

(10) incorporates information about b, c, and d and therefore

is not restricted to the assumption that the symbols are

equally likely and independent. The marginalization of (9) and

(10) can be obtained simultaneously from the sum-product

algorithm.

A. Factor graph

In the iterative receiver we require the ability to decode

the frame of several modulation schemes. Thus, the number

of decoder/de-interleaver blocks is determined by the highest

order modulation (Z = maxm log2 Sm). The factor graph

representing the factorization in (8) is given in Fig. 3. Each

factor of (8) is considered in the paragraphs that follow.
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Fig. 3. Iterative receiver factor graph

The encoders and interleavers are deterministic functions of

the input. Let the encoder be expressed by the function g(·)
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such that cz = g(bz). This allows the conditional distribution

p(c|b) to be expressed

p(c|b) =
Z
∏

z=1

I[cz = g(bz)] (11)

where I[·] is the indicator function with value 1 if the ex-

pression is true and value 0 otherwise. For additional details

on the structure of the decoder and the corresponding sum-

product algorithm the reader is referred to [9]. In a similar

way, the conditional distribution p(d|c) may be expressed

p(d|c) =
Z
∏

z=1

K
∏

k=1

I[cz,k = dz,π(k)]. (12)

Using factor graphs, we are able to combine modulation

classification and demodulation in a very natural way. The

conditional distribution p(y|d,m) can be factored into K
terms as follows:

p(y|d,m) =

K
∏

k=1

pk(yk|d:,k,m) (13)

A detailed view of the classifier/demodulator node is shown in

Fig. 4 where the notation m(k) is used to denote multiple in-

stances of the same modulation variable which are constrained

to be equal through the “equals node” [9]. This factorization

follows the transmitter’s structure which takes an output from

each bit interleaver to construct a symbol. The intra-symbol

interleaver is not shown in this structure because it is handled

within each factor node pk. Let the function hm provide a

constellation point from the mth modulation given a vector of

input bits. This leads to the following function

pk(yk|d:,k,m) = I [yk ∈ {sm,1, . . . , sm,Sm
}]

· I [hm (ψm,k (d:,k)) = yk] . (14)

The function enforces the structure of the intra-symbol inter-

leaver and modulator for the modulation specified by m.

Finally, the distribution f(r|y) can be factored into K terms

due to the conditional independence of the samples

f(r|y) =

K
∏

k=1

f(rk|yk) =

K
∏

k=1

exp

(

−
1

σ2
N

||rk − yk||
2

)

.

(15)

B. Message passing

The high level schedule for the sum-product algorithm on

the factor graph of Fig. 3 begins with computing messages

µf(rk|yk)→yk
. These messages are input to the sum-product al-

gorithm on the classifier/demodulator which will be described

in this section. The result of the sum-product algorithm on

this block is messages µp(y|d,m)→m and µp(y|d,m)→d. The

messages µp(y|d,m)→d are passed to the de-interleaver which

produces µp(d|c)→c. This provides input to the decoder which

provides messages µp(c|b)→c and µp(c|b)→b. The messages

from the decoder to the coded bits are passed through the de-

interleaver producing µp(d|c)→d. This provides local a priori

input to the classifier/demodulator and completes one iteration.

Using the new information about the messages µp(d|c)→d,

successive iterations are performed.

We now consider the sum-product algorithm in detail for

the classifier/demodulator node. Message passing for the joint

classifier and demodulator is outlined in the following steps:

1) Initialize input messages from y and d to nodes pk and

from m(0) to the equals node.

2) Compute messages µpk→m(k) for k = 1, 2, . . . ,K.

3) Update the equals node outward messages µm(k)→pk
.

4) Compute messages µpk→dz,k
for z = 1, 2, . . . , Z and

k = 1, 2, . . . ,K.

In the factor graph framework, the message for a variable

out of an equals node is the product of the messages from all

other variables connected to the node. Thus, the messages for

the modulation variable can be computed as

µeq→m(0)(m) =
K
∏

k=1

µpk→m(k)(m) (16)

where the marginal is given by

p(m|r) = µeq→m(0) · µm(0)→eq (17)

and the message µm(0)→eq contains the a priori probabilities

of the modulation schemes p(m).

In the first iteration of the sum-product algorithm, no prior

information about the interleaved bits d is available. The

messages µdz,k→pk
are initialized as uniform distributions.

The messages on the edges of the symbol variable yk contain

probabilities for the constellation points in all modulations as



given by

µyk→pk
(yk) =























exp
(

− 1
σ2
N

||rk − s1,1||
2
)

...

exp
(

− 1
σ2
N

||rk − sm,l||
2
)

...

exp
(

− 1
σ2
N

||rk − sM,SM
||
2
)























(18)

The message computation for m(k) at each factor pk is

computed according to the sum-product algorithm as follows:

µpk→m(k)(m)

=
∑

yk,d:,k

pk(yk|d:,k,m) · µyk→pk
(yk)

· µd1,k→pk
(d1,k) · µd2,k→pk

(d2,k) . . . µdZ,k→pk
(dZ,k)

=
1

2Z

∑

yk,d:,k

I [yk ∈ {sm,1, . . . , sm,Sm
}]

· I [gm (ψm,k (d:,k)) = yk] · µyk→pk
(yk). (19)

For BPSK (m = 1) the expression in (19) can be further

reduced to

µpk→m(k)(1)

=
1

2

∑

yk,d1,k

I [yk ∈ {s1,1, s1,2}]

· I [g1 (d1,k) = yk] · µyk→pk
(yk)

=
1

2

(

exp

(

−
1

σ2
N

||rk − s1,1||
2

)

+ exp

(

−
1

σ2
N

||rk − s1,2||
2

)

)

. (20)

Equivalent results are obtained for other modulations. Substi-

tuting a general form of these results into (16) produces

µeq→m(0)(m) =

K
∏

k=1

1

Sm

Sm
∑

l=1

exp

(

−
1

σ2
N

||rk − sm,l||
2

)

(21)

which is identical to (7) for ML classification and provides

a verification of the factor graph. In successive iterations the

messages µp(d|c)→d provide feedback from the decoder and

are not necessarily uniform.

IV. SIMULATION RESULTS

In order to demonstrate the iterative receiver we simulate the

design for M = 4 with modulations BPSK, QPSK, 16QAM,

and 64QAM. The highest order modulation (64QAM) requires

Z = 6 blocks to be incorporated into the receiver structure.

The encoder employs a 1/2-rate convolutional code with a

constraint length of kc = 7 (64 state). The octal generators

of the code are (133, 171) and provide the maximum free

distance [15]. A zero tail is used to convert the convolutional

code into a block code. The receiver’s decoder utilizes a sum-

product implementation of the BCJR algorithm. We consider

frame lengths of 50, 100, and 150 symbols in order to deter-

mine the influence that the frame size has on the classifier’s

performance. The receiver performs 10 iterations of the sum-

product algorithm. Fig. 5 displays the probability of correct

modulation classification averaged over all modulations. The

iterative receiver demonstrates a gain of 5 to 8 dB over ML

classification in the traditional receiver.
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Fig. 5. Average classification performance of the iterative and traditional
receivers with frame lengths of K = 50 (solid), K = 100 (dash), and
K = 150 (dot) symbols.

At low SNR, the most significant gains in performance are

for 16QAM which has the worst performance in the traditional

receiver. In Table I, the confusion tables for the iterative

and traditional receivers are given at an SNR of 2 dB. ML

classification has a significant bias towards classifying 16QAM

as 64QAM. The iterative receiver nearly eliminates this bias

while improving overall classification.

TABLE I
CONFUSION TABLE FOR SNR = 2 dB, K = 100, AND 10 ITERATIONS

Iterative Receiver

True\Hypothesis BPSK QPSK 16QAM 64QAM

BPSK 100 0 0 0

QPSK 0 99.07 0.47 0.46

16QAM 0 4.26 78.35 17.39

64QAM 0 4.23 14.17 81.59

Traditional Receiver

True\Hypothesis BPSK QPSK 16QAM 64QAM

BPSK 100 0 0 0

QPSK 0 81.10 14.70 4.20

16QAM 0 19.49 36.57 43.94

64QAM 0 14.31 32.50 53.20

The end goal is to correctly detect the transmitted message.

Improving the classification performance is useful if this

translates to a reduction in the frame error rate (FER) or bit

error rate (BER). For our purposes frame errors include both

modulation classification errors and frame detection errors.

In order to provide a reference point to the performance of

the iterative and traditional receivers, we also simulate the
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performance with known modulation. In all cases iterative

demodulation and decoding is performed. Fig. 6 shows the

FER of the iterative and traditional receivers. Improved clas-

sification performance in the iterative receiver does in fact

lead to improvements in the FER of the system. For BPSK

and 64QAM, the iterative receiver achieves ideal performance

(that which is achieved with known modulation). For QPSK

and 16QAM the system is limited by the classifier, but still

improves upon the traditional receiver by as much as 3 dB.

When considering FER, the performance of the traditional

receiver employing 64QAM is already very near the ideal

performance. Therefore a comparison of BER performance

versus Eb/N0 is given in Fig. 7 where Eb/N0 = SNR ·
1/ log2 Sm · K/(K/2 − 6). For the purposes of simulating

the BER we compare the transmitted sequence with the

appropriate bits at the receiver. In terms of BER, the iterative

receiver achieves a 2 dB gain over the traditional receiver for

Eb/N0 < 8 dB.

V. CONCLUSION

An iterative receiver for solving the problem of joint modu-

lation classification, demodulation, and decoding is proposed.

The iterative receiver is based on factor graphs and the

associated sum-product algorithm. The performance of the

iterative receiver is quantified with respect to the performance

of a receiver which completes the task of modulation clas-

sification separately from demodulation and decoding. The

iterative receiver is shown to provide greater than 5 dB gain in

terms of modulation classification. By improving the reliability

of automatic modulation classification, the proposed iterative

receiver enables efficient use of the spectrum at low SNR.
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