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Abstract—Wireless sensor localization using received signal
strength (RSS) measurements is investigated in this paper. Most
studies for RSS localization assume that the shadowing compo-
nents are uncorrelated. However in this paper, we assume that
the shadowing is spatially correlated. Under this condition, it
can be shown that the localization accuracy can be improved if
the correlation among links is taken into consideration. Avoiding
the maximum likelihood (ML) convergence problem, we derive a
novel semidefinite programming (SDP) approach by converting
the corresponding noncovex ML estimator into a convex one. The
performance of the proposed SDP estimator is compared with the
ML estimator and previously considered estimators. Computer
simulations show that the proposed SDP estimator outperforms
the previously considered estimators in both uncorrelated and
correlated shadowing environments.

Index Terms—received signal strength (RSS), sensor localiza-
tion, correlated shadowing, semidefinite programming (SDP).

I. INTRODUCTION

Recently, position location has been widely studied in the

literature because of its important applications in both wireless

sensor networks (WSN) and cellular systems. In a WSN,

the collected information from the sensors is often useless

if their positions are not available. However, equipping all

sensors with a Global Positioning System (GPS) receiver

is very expensive and typically impractical. Moreover, GPS

does not work properly in indoor environments or forest

environments where the satellite signal attenuates severely.

Sensor localization generally requires two or more anchor

nodes with known positions to determine the location of source

nodes with unknown positions via noisy measurements such as

time-of-arrival (TOA) [1], [2], received signal strength (RSS)

[3]–[5], and time-difference-of-arrival (TDOA) [6]. In this

paper, RSS localization is considered, since it is practically

simple and inexpensive to implement [1].

The Cramér-Rao lower bound (CRLB) of RSS localiza-

tion was derived in [3], [7]. The maximum likelihood (ML)

estimator is always one of the most interesting estimators

because it can attain the CRLB accuracy for sufficiently high

signal-to-noise-ratio. The ML estimator of RSS localization

was derived in [3]. It can be shown that the cost function of

the ML estimator is highly nonlinear and nonconvex [8], [9].

The ML estimator does not have a closed-form solution, but

it can be approximately solved by iterative algorithms [10],

[11]. However, iterative algorithms require a good starting

point to make sure that they converge to a global minimum.

If an appropriate initialization is not selected for an iterative

algorithm, it can get stuck in either a local minimum or a

saddle point which can introduce a large estimation error.

Sub-optimal estimators such as linear estimators and convex

estimators have emerged to deal with the convergence problem

of the ML estimator. A linear least squares (LLS) estimator for

RSS localization is derived in [4]. Although linear estimators

have a closed-form solution, their performance is not as

accurate as the ML estimator, especially when the number

of available anchor nodes is limited [9]. Convex relaxation is

another solution for the ML problem in which the nonconvex

cost function of the ML estimator is converted into a convex

optimization problem. Semidefinite programming (SDP) [8],

[12]–[14] and second order cone programming (SOCP) [15]

are the convex estimators that are typically considered for

sensor localization. In [13], assuming pair-wise distance mea-

surements are available, an SDP estimator for the estimation of

the source location was derived. However, in RSS localization,

the received powers are measured and the pair-wise distances

are not directly available. An SDP estimator which is directly

applied to the RSS measurements was derived in [8], [16].

Most previous studies assume that the RSS measurements

are uncorrelated. However, in most indoor environments,

the shadowing components are generally correlated due to

physical obstructions. More specifically, neighboring sensor

nodes often experience the same shadowing which makes RSS

links correlated [7]. It will be shown in this paper that when

there is correlation among RSS measurements, the accuracy

of positioning can be improved, which is consistent with

the results in [7], [17]. However, if a localization algorithm

neglects the correlation, the improvement is not significant.

In this paper, RSS sensor localization in spatially correlated

shadowing is examined. First, we derive the corresponding

ML estimator for the measurement model. Then, by using

a Taylor series expansion and convex relaxation, the ML

cost function is converted into an SDP optimization problem.

The performance of the proposed SDP estimator is evaluated

through computer simulations in both uncorrelated and corre-

lated shadowing environments.

II. SYSTEM MODEL

The measurement model of RSS localization with correlated

shadowing will be described in this section. A network with

M anchor nodes with known positions and one source node

with an unknown position is considered. Let yi ∈ R
2, i =

1, 2, . . . ,M be the known coordinates of the ith anchor node
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and x ∈ R
2 be the unknown coordinates of the source node.

The received power (in dBm) at the ith anchor node, Pi, under

log-normal shadowing is modeled as [3]

Pi = P0 − 10β log10
di
d0

+ ni, i = 1, 2, . . . ,M, (1)

where P0 (in dBm) is the reference power at distance d0
from the source node. β is the path loss exponent which

varies typically between 2 and 4 depending on the propagation

environment [1]. di = ‖x− yi‖2 is the true distance between

the source node and the ith anchor node, where ‖ · ‖2 denotes

the ℓ2 norm. ni are the log-normal shadowing terms. In most

studies, the shadowing is simply modeled as independent

and identically distributed (i.i.d.) zero-mean Gaussian random

variables with covariance matrix Q = σ2
dBIM [3], [4], [8],

[16]. However, in this paper, we assume that the shadowing is

not independent and model the covariance matrix as [7], [17]

[Q]ij =

{

σ2
dB, if i = j,

ρijσ
2
dB , if i 6= j,

(2)

where σdB is the standard deviation of the shadowing which

is constant with distance and only depends on the propagation

environment [1]. Expressed in dB, σdB is generally between

4 and 12 dB [1]. ρij is the correlation coefficient between

the ith and the jth links. Unlike most studies which assume

ρij = 0, in practical cases, the shadow fading is spatial

correlated (ρij 6= 0), because of the network configuration

and the obstacles between the source and anchor nodes [7],

[17]. The correlation between a pair of sensor nodes depends

on their relative angles and distances [18]. Empirical studies

show that the value of the correlation coefficient typically

varies from 0.2 to 0.8 [19]. Without loss of generality, for

the rest of the paper, we assume d0 = 1 m. We also assume

that the values of P0, β, and Q are available to the estimator.

However, we do examine the impact of the imperfect Q on

the performance.

III. MAXIMUM LIKELIHOOD

The CRLB defines a lower bound on the performance of any

unbiased estimator. The ML estimator can achieve the CRLB

asymptotically (when the number of measurements tends to

infinity) [20]. The ML estimator of the measurement model

in (1) is obtained by the following optimization problem [3],

[20]

x̂ML = argmin
x∈R2

(

p− g(x)
)T

Q−1
(

p− g(x)
)

, (3)

where p = [P1, P2, . . . , PM ]T is the measurement vector and

[g(x)]i = P0 − 10β log10 di. (4)

The objective function in (3) is severely nonlinear and noncon-

vex, and does not have a closed-form solution. The solution

of the ML estimator can be approximately found by iterative

numerical techniques such as the Gauss-Newton method [10],

[20]. The iterative algorithms require a good initialization to

guarantee that the algorithm converges to the global minimum.

However, even with a good starting point, the iterative solver

of the ML estimator may return a local minimum or saddle

point which causes a large estimation error.

IV. SEMIDEFINITE PROGRAMMING

In this section, the proposed SDP estimator will be derived.

By using Taylor series expansion, first the original ML esti-

mator is alternatively formulated as a nonlinear least squares

(NLS) problem which has a smoother cost function [5]. It is

then converted into an SDP optimization problem. Rearranging

(1) and dividing both sides by 10β gives

log10 di +
Pi − P0

10β
=

ni

10β
. (5)

Taking the power of 10 on both sides yields

λidi = 10ni/10β , (6)

where λi = 10(Pi−P0)/10β . By using the first-order Taylor se-

ries expansion, the right-hand side of (6) can be approximately

written for sufficiently small shadowing (ni ≪ 10β/ ln 10) as

[5], [9]

λidi = 1 +
ln 10

10β
ni. (7)

Rearranging (7) yields

λidi − 1 = ǫi, (8)

where ǫi = (ln 10/10β)ni. Writing (8) in vector form yields

Ld− 1M = ǫ, (9)

where L = diag{λ1, λ2, . . . , λM}, d = [d1, d2, . . . , dM ]T ,

and ǫ = [ǫ1, ǫ2, . . . , ǫM ]T . The source node location can be

estimated by using the weighted NLS of the model in (9) as

[20, Ch. 8]

x̂ = argmin
x∈R2

ǫ
TWǫ, (10)

where W is a weighting matrix which is equal to the inverse

of the covariance matrix of

W =
(

E[ǫǫT ]
)−1

= (10β)2/(ln 10)2Q−1. (11)

The minimization problem in (10) is still nonlinear and non-

covex. The cost function of (10) can be expressed as

ǫ
TWǫ = Trace

{

Wǫǫ
T
}

,

= Trace
{

W(Ld− 1M )(Ld− 1M )T
}

,

= Trace
{

W(LDLT − 2Ld1T
M + 1M1T

M )
}

, (12)

where D = ddT . The diagonal elements of the matrix D are

[D]ii = d2i =

[

yi

−1

]T [

I2 x

xT z

] [

yi

−1

]

, (13)

where z = xTx. To convert the nonconvex objective function

in (10) into a convex function, we must relax the elements

in (12)-(13) that are not affine (i.e., z and D) [21]. Relaxing

non-affine operations, we can write them as a linear matrix
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inequality (LMI) [22], [23]

z = xTx ⇒

[

I2 x

xT z

]

� 03,

D = ddT ⇒

[

D d

dT 1

]

� 0M+1.

Finally, the minimization problem of (10) is relaxed into an

SDP optimization problem as [22]

minimize
x,z,d,D

Trace
{

W(LDLT − 2Ld1T
M )

}

subject to [D]ii =

[

yi

−1

]T [

I2 x

xT z

] [

yi

−1

]

,

[

D d

dT 1

]

� 0M+1,

[

I2 x

xT z

]

� 03. (14)

The solution of (14) can be effectively found with the nu-

merical algorithms such as interior point methods [21], [22].

Unlike the original ML estimator, the proposed SDP estimator

does not have convergence problems [21], [22]. Standard SDP

solvers such as SeDuMi [24] can be employed to solve SDP

optimization problems in MATLAB.

V. SIMULATION RESULTS

Computer simulations were conducted to evaluate the per-

formance of the proposed estimator. RSS measurements were

generated based on the measurement model in (1). The values

of the path-loss exponent β and the reference power P0 were

set to 4 [1] and -40 dBm [9], respectively. We assume that

all measurements have the same correlation coefficient, hence

ρij = ρ [17]. The values of σ2
dB and ρ are mentioned in

each figure. The covariance matrix of shadowing, Q, is a

symmetric and positive- definite matrix. Then, using Cholesky

decomposition, Q can be decomposed as [17]

Q = BBT , (15)

where B is a lower triangular matrix. Let n =
[n1, n2, . . . , nM ]T be the vector of shadowing components in

(1) which are zero-mean Gaussian random variables with a

covariance matrix Q. Then, n can be generated as [17]

n = Bw, (16)

where w is a vector of zero-mean iid Gaussian random

variables with unit variance. It should be noted that the

proposed SDP estimator works for every covariance matrix

Q, even if we have different correlation coefficients for the

measurements. The ML estimator was solved by MATLAB

routine fminunc and was initialized with the true value

of the source location. The proposed SDP estimator was

implemented by cvx [25] using SeDuMi as a solver [24].

Besides the ML estimator, three previously proposed esti-

mators were selected for comparison. An SDP estimator was

derived in [8] which directly used the RSS measurements.

Another SDP estimator was derived in [16] which is based

on an unscented transformation and SDP relaxation. Further,

we also included a linear least squares (LLS) estimator with

TABLE I
THE AVERAGE RUNNING TIME OF THE COMPARED ESTIMATORS. CPU:

INTEL CORE 2 DUO E7500 2.93 GHZ.

Estimator Description Time [ms]

ML-UNC The ML estimator in (3) with Q = IM 14.83
ML The ML estimator in (3) 16.24
SDP-NEW The proposed SDP estimator in (14) 48.06
SDP-RSS The SDP estimator in [8] 74.68
SDP-UT The SDP estimator in [16] 52.27
LLS The linear estimator in [4] 00.28
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Fig. 1. The CDF of localization error for the compared estimators. σdB =

4 dB, ρ = 0 (uncorrelated case). The performance of the proposed SDP
estimator is very close to the optimal ML estimator.

a closed-form solution given in [4] in the comparison. A

summary of the compared estimators can be found in Table I.

We consider a network with four anchor nodes and one

source node. The locations of anchors are fixed and 121

locations for the source node are generated uniformly in

a square region of 10m × 10m. In Fig. 1, we plot the

cumulative distribution function (CDF) of localization error of

the compared estimators when the correlation coefficients are

zero, meaning that shadowing is uncorrelated. The standard de-

viation of shadowing σdB was set to 4 dB. The depicted CRLB

is obtained by averaging over the CRLB of each source node

location. Fig. 1 shows that the ML estimator is optimal and has

superior performance in comparison to the other estimators,

mainly because its solver is initialized with the true values. The

proposed SDP (SDP-NEW) provides excellent accuracy and its

performance is very close the optimal ML estimator. SDP-RSS

and SDP-UT also show good performance, although they are

slightly worse than ML and SDP-NEW. We later show that the

running time of the proposed SDP estimator is considerably

less than the other two SDP estimators, exhibiting its major

advantage in uncorrelated shadowing. The LLS has inferior

performance among the compared estimators.

In Fig. 2, we compare the CDF of localization error of the

considered estimators when shadowing is highly correlated.

The standard deviation of shadowing σdB and correlation
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Fig. 2. The CDF of localization error for the compared estimators. σdB = 4

dB, ρ = 0.8 (correlated case). ML performs considerably better than ML-
UNC meaning that using correlation among shadowing components can
improve positioning accuracy considerably. The proposed SDP estimator is
still close to ML and outperforms the other estimators.

coefficient were 4 dB and 0.8, respectively. The shadowing

components were generated using (16). To show the effect of

spatial shadowing on localization accuracy, we plot the ML

estimator in two situations. Besides the ML estimator in (3)

using the non-diagonal covariance matrix Q, we also plot an

ML estimator (labeled as ML-UNC) which uses a diagonal

covariance matrix Q = σ2
dBIM and neglects the correlation

among shadowing components. Comparing the CRLB in Fig. 1

and Fig. 2, we can see that the localization accuracy improves

about 10% in correlated shadowing. However, the estimators

should take the correlations into account in order to exploit this

improvement. ML considering shadowing correlations shows

about 0.7 m improvement at 70% CDF in comparison with the

uncorrelated case in Fig. 1. However, ML-UNC neglecting

shadowing correlations shows only a slight improvement in

this case. The proposed SDP estimator exhibits good im-

provement and its performance is still very close to ML. The

improvement is not dramatic for other estimators, SDP-RSS,

SDP-UT, and LLS, since these estimators do not consider the

correlations among shadowing components or cannot be easily

adapted to do so.

In Table I, we compare the average running time of the

considered estimators. We considered the same network con-

figuration as in Fig. 2 with the standard deviation of shadowing

of 4 dB and the correlation of 0.8. The linear estimator has

the fastest running time, since the estimator requires simple

calculations and all of them are done in one iteration. ML

and ML-UNC run faster than the SDP estimators. However, it

should be noted that the ML estimator is initialized with the

true values which decreases the running time significantly as

the solver converges after some iterations [5]. ML requires a

larger number of iterations and has higher running than ML-

UNC. The reason in that the cost function of ML-UNC has

only quadratic terms and is less complex than the that of ML.
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Fig. 3. The RMSE of the compared estimators versus the standard deviation
of the shadowing with ρ = 0.8. As the shadowing increases, the difference
between ML and ML-UNC increases.

This is the cost that must be paid for higher accuracy. As can

be seen from Table I, among SDP estimators, the proposed

SDP estimator has not only the highest accuracy but also the

lowest running time.

Fig. 3 shows the root mean square error (RMSE) of the

compared estimators versus the standard deviation of the

shadowing. The same network configuration is considered.

The correlation coefficient ρ was set to 0.8. The RMSE for

each estimator is computed by averaging over all source

node locations and random noise realizations. The differ-

ence between ML and ML-UNC increases as the standard

deviation of the shadowing increases. Therefore, considering

correlations among measurement in severe shadowing is more

beneficial. The proposed SDP estimator provides excellent

performance which is very close to the ML estimator accuracy

for all shadowing range. For shadowing larger than 2 dB,

the performance of ML, SDP-NEW, and SDP-UT is lower

than the CRLB. The reason is that the estimators are biased

and we cannot expect the CRLB to provide a lower bound

on their accuracy. This phenomenon happened frequently in

other studies [5], [16]. Among ML-UNC, SDP-RSS, SDP-UT,

and LLS that do not consider correlated shadowing, SDP-UT

provides the best accuracy.

In the previous simulations, we assumed that the exact

values of the covariance matrix are known to the estimator.

However, in practical case, this assumption might not be

valid as the exact value of the correlation may be difficult to

determine. Here, we examine the sensitivity of the proposed

estimator to the knowledge of the covariance matrix. Now,

we assume that the exact values of ρij are not available to

the estimator. Instead, it has an approximate (estimated) value

ρ̂ij :

ρ̂ij = ρij + qij (17)

where qij is modeled as iid truncated Gaussian random

variables with the variance of 0.01 which defines the uncer-
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TABLE II
THE RMSE OF THE COMPARED ESTIMATORS WITH THE TRUE AND

APPROXIMATE COVARIANCE MATRIX (CM). σdB = 4, ρij = 0.8.

Estimator True CM Approximate CM

ML 1.35 1.48
SDP-NEW 1.41 1.53

tainty on the correlation coefficients. The reason we model

the uncertainty as a truncated Gaussian random variable is

that the correlations ρ̂ij must be between 0 and 1. The

same configuration as in Fig. 2 was considered. Table II

shows the RMSE of the proposed estimator with the true

and approximate covariance matrix. As can be seen, the

performance of both ML and SDP-NEW declines slightly by

using an approximate covariance matrix. However, they both

still provide better accuracy than the estimators which neglect

the correlation among measurements (Fig. 3). The reader is

referred to [5] for the sensitivity of the proposed estimator

to the knowledge of the transmit power and the path-loss

exponent in uncorrelated shadowing.

VI. CONCLUSION

We examined RSS-based wireless sensor localization in

spatially correlated shadowing environments. Avoiding the

ML estimator convergence problem, we derived a novel SDP

technique by converting the ML estimator into a convex

estimator. It was shown that when RSS measurements are cor-

related, the estimation accuracy of the source location can be

significantly improved. Computer simulations were conducted

to compare the proposed SDP estimator with the ML estimator

and previously considered estimators. Results showed that the

performance of the proposed estimator approaches the ML

estimator accuracy and outperforms the previously considered

estimators with considerably lower complexity in both uncor-

related and correlated shadowing environments.

VII. RELATION TO PRIOR WORK

The current work is related to the work in [8] and [16].

The proposed SDP estimator in the current work has two

advantages over the SDP estimators in [8] and [16]. First, the

proposed SDP estimator considers the correlation among RSS

measurement in spatially shadowing environments. Second,

the proposed SDP estimator provides higher performance with

less complexity.
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