
Optimal Jamming using Delayed Learning
SaiDhiraj Amuru and R. Michael Buehrer

Bradley Department of Electrical and Computer Engineering
Virginia Tech, Blacksburg, VA USA
Email: {adhiraj, rbuehrer}@vt.edu

Abstract—Recent advances in cognitive radios for electronic
warfare create the potential for dynamic environmental condi-
tions, which makes it difficult to rely upon predict-then-adapt
approaches in unfamiliar environments. It is thus imperative
that radios have increasingly intelligent capabilities in order to
be effective in harsh unknown surroundings. In this paper, we
explore whether an intelligent jammer can learn and adapt to its
surroundings in an electronic warfare-type scenario. We address
this problem from a reinforcement learning perspective where the
jammer has delayed information regarding the packets exchanged
between a victim transmitter and the receiver. This is differ-
ent from the traditional assumption that feedback is available
instantaneously in reinforcement learning-based algorithms. A
new framework, to enable delayed learning in scenarios where
rewards are associated with state transitions rather than the states
themselves is developed. The benefits of such a framework are
shown by studying the optimal jamming strategies against an
802.11-type wireless network that uses the RTS-CTS protocol to
communicate and deliver information.

I. INTRODUCTION

The concept of cognitive radio [1] introduces the potential
for radios to learn their surroundings. For example, spectrum
sensing is used to learn the use of shared spectrum resources
[2]. This knowledge enables radios to coexist along with other
radios. Further, in most commercial and military applications,
the underlying communication protocol of other radios is not
known a priori, which makes it necessary for a radio to learn
and adapt to the behavior of other radios rather than using a
predict-then-adapt approach. In this paper, we explore whether
a jammer can learn the behavior of other radios and develop
an attack strategy in an electronic warfare-type scenario.

Reinforcement learning (RL)-based algorithms have tradi-
tionally been used to address such cognitive learning scenarios
[3]. In RL, a radio (agent) learns the optimal strategy (for
example, survival strategy in the presence of malicious nodes)
by repeatedly interacting with the environment. During these
interactions, the agent receives feedback indicating whether
the actions performed were good or bad, using which it can
improve its strategy to maximize rewards or minimize costs
[3]. Note that rewards depend on the context and the problem
being studied, for example throughput obtained or energy
expended in communicating with other radios.

Most RL algorithms assume the existence of immediate
observations based on which learning is performed. Here,
observations correspond to either the state of the environment
(most practical wireless environments can be modeled by
a Markov state machine) or the rewards/costs obtained for
the actions performed. In practical environments, feedback
can potentially be delayed by several time instants [4]. For
example, when a jammer disrupts a packet that is exchanged
between the transmitter and receiver, it is not aware whether
the jamming was successful or not until an acknowledgement
packet is sent by the receiver. It may also not know what type
of packet it jammed and hence it is not aware of the state

of the system. Thus, there is delay in learning the efficacy of
the actions performed and modifying the actions based on the
obtained information.

Learning in scenarios where the observations are delayed
was studied in [4]-[6]. Learning in cases where the impact of
actions is delayed i.e., the effect of actions taken now is seen
at a later time instant was considered in [5]. A framework to
reformulate the learning scenario with delays to an equivalent
learning problem without delays, which only differ in the size
of the state space, was discussed in [4], [5]. These works
also assume that rewards are associated with states of the
environment which again does not always hold true in practical
scenarios. This warrants the development of a new delayed
learning framework that enables RL to identify the optimal
strategies when rewards are associated with state transitions
rather than the states themselves.

In this paper, we first develop a novel framework to address
delayed learning with transition-based rewards in Section II.
We then show the utility of this framework in Sections III and
IV by obtaining the optimal power efficient jamming strategies
that reduce the throughput of a wireless network. Protocol
aware, energy efficient jamming strategies when the jammer
has instantaneous knowledge of the packets exchanged, were
studied via OPNET simulations in [7]; where the authors dis-
cussed the effectiveness of jamming the control packets when
compared to naive periodic or continuous jamming. While the
jammer can jam and receive data simultaneously, it is not
always instantaneously aware of the environment state. For
example, due to processing delays, the jammer cannot decode
a packet until the packet transmission is finished. Hence, it is
aware of the environment state only with a unit time delay. We
thus explore in this paper, whether or not a jammer can learn its
surroundings and disrupt a wireless network by using only the
delayed knowledge, which is different from the assumptions
made in [7] and references therein.

We show the benefits of the new delayed learning frame-
work by considering the case of an 802.11-type wireless
network, where the transmitter and receiver use the RTS-
CTS protocol to communicate [8]. The jammer can jam either
the source node or the destination node so as to disrupt
the wireless network. We begin with the assumption that the
jammer is aware of the protocol used by this transmit-receive
pair and obtain the optimal jamming strategies. While we make
several assumptions regarding the knowledge of the jammer,
we show the effect of these assumptions in Section IV. Finally,
conclusions are presented in Section V.

II. LEARNING FRAMEWORK

Reinforcement learning is a technique that allows an agent
to modify its actions (without any supervision) by repeatedly
interacting with the environment. A reinforcement learning
task that satisfies the Markov property is called a Markov

decision process, or MDP, [3]. A MDP is defined by a tuple
{S,A, P,R} where S is the set of all possible environment
states and A is the set of all possible actions that the agent
can perform in any environment state. For instance, from a
jammer’s perspective, the environment states could be Trans-
mission/No Transmission to reflect the cases where a packet is
exchanged between the transmit-receive pair or when they are
idle, and the actions of the jammer could be Jam/Don’t Jam.
P is the state transition probability matrix that governs the
dynamics of the environment, and its entries are given by the
transition probabilities p(s′|s, a) which indicates the probabil-
ity that the environment moves to the state s′ when action a
is executed in the state s. Finally R indicates the |S| ∗ |A|
reward matrix whose entries are given by elements r(s, a)
which indicate the reward (for example, energy expended)
obtained in state s when action a is executed. Here, |S| and
|A| indicate the cardinality of the sets S and A respectively.

In the traditional undelayed RL framework, an agent ob-
serves the current state of the environment s, and chooses an
action a. An optimum policy (a functional mapping between
states and the actions that can be performed in these states)
is one that maximizes the total expected rewards, that is more
often than not discounted by a factor γ ∈ [0, 1) to account
for an infinite time horizon. The objective of a RL algorithm
is therefore to find a policy Π, that maximizes the cumulative
discounted reward

R(t) =

∞∑
k=0

γkr(st+k, at+k), (1)

where st, at indicate the state and action taken at time t [9].
The value of a policy Π when the environment is in state s is
given by

V Π(s) = EΠ

(∞∑
k=0

γkr(st+k, at+k|st = s)

)
, (2)

where EΠ indicates the averaging performed over all possible
state transitions when the agent follows the policy Π. Several
algorithms exist to find the optimal policy Π∗. For more details
please see [3]. For ease of analysis, we assume a stationary
model (state transition matrix is independent of time) and
ignore the time parameter t hereafter.

When the underlying MDP model is known, policy eval-
uation (finding the value of a given policy) can be done via
matrix inversion [3]. Specifically,

V Π(s) = r(s, a = Π(s)) + EΠ

(∞∑
k=1

γkr(sk, ak|s)

)
= r(s, a = Π(s)) + γ

∑
s′

p(s′|s, a = Π(s))V Π(s′).

Thus, writing the above set of equations for all possible states
s ∈ S in the MDP, we have

V̄Π = r̄Π+γPΠ(s′|s)V̄Π=⇒V̄Π=
(
I−γPΠ(s′|s)

)−1
r̄Π (3)

where V̄Π is the |S| ∗ 1 vector of values of the policy Π in
states s ∈ S, r̄Π is the |S| ∗ 1 vector of rewards obtained in
state s ∈ S using policy Π and PΠ(s′|s) indicates the |S|∗ |S|
state transition probability matrix when the agent uses policy
Π, and I is an identity matrix of appropriate dimensions.

A. Delayed Learning

As discussed earlier, feedback regarding the states and
the rewards is not always available instantaneously. In [4],
[5], [10] it is shown that MDPs with a constant observation
delay (state and rewards) can be modeled using an augmented
MDP approach. This involves formulating an augmented MDP
that is equivalent to the original MDP, but with a larger
state space that takes the observation delay into considera-
tion. A MDP with observation delays is represented by the
tuple {S,A, P,R, k}, where k is the observation delay. The
equivalent augmented MDP is represented as {Ik, A, P ′, R′},
where Ik = S × Ak is the augmented state space (Ak is the
Cartesian product of A with itself k times and S×Ak indicates
the Cartesian product of S with Ak). The state at time t i.e.,
Itk ∈ Ik is represented as (st−k, at−k, at−k+1, . . . , at−1). In
the augmented state Itk, st−k is the most recently observed
state, and at−k, . . . , at−1 are the actions taken in the last k
time intervals. The state transition probability is defined as

P ′(It+1
k |Itk) = p(st−k+1|st−k, at−k), (4)

where It+1
k = (st−k+1, at−k+1, . . . , at) and rewards are de-

fined as R′(Itk) = r(st−k, at−k). Notice that since the state
st−k+1 is not known with certainty, the immediate reward
obtained by the transition from the state Itk to It+1

k is given
by EΠ(R′(It+1

k |Itk)) = EΠ(R(st−k, at−k|Itk)), which in other
words corresponds to the expected (with respect to policy Π)
immediate reward. Using these definitions, the value of the
policy Π in an augmented state Itk is given by

V Π(Itk) = EΠ

(∞∑
l=1

γl−1R′(It+l
k |I

t
k)

)
, (5)

which can be rewritten as

V Π(Itk) =
∑

st−k+1

pΠ(st−k+1|st−k, at−k)rΠ(st−k+1, at−k+1)

+ γ
∑
It+1
k

P ′
Π

(It+1
k |Itk)V Π(It+l

k), (6)

where pΠ, P ′Π and rΠ are the transition probabilities and
rewards obtained when policy Π is used i.e., at−k = Π(st−k),
at−k+1 = Π(st−k+1). The matrix inversion technique in (3)
can be extended to this augmented model to evaluate the value
of a policy Π. Please see [4], [10] for more details.

B. A Novel Delayed Learning Framework with Transition-
based Rewards

Notice that the RL algorithms discussed earlier assume
state-based rewards as seen in (3) and (6). As mentioned
earlier, this assumption does not always hold true in practical
settings. For example, this can occur in scenarios where the
MDP has a terminal state (say the QUIT state) which can be
reached from several other states (say the GOOD state and the
BAD state), but rewards are obtained only for some of these
state transitions (for example, when the QUIT state is reached
from the GOOD state only). A jamming scenario where
transition-based rewards occur is discussed in Section III.

We modify the delayed learning framework in [4], [10], to
address scenarios with transition-based rewards. Specifically,
the value of a policy Π is given by,

V Π(Itk) =
∑
It+1
k

P ′
Π

(Itk, I
t+1
k)R′

Π
(Itk, I

t+1
k)

+ γ
∑
It+1
k

P ′
Π

(Itk, I
t+1
k)V Π(It+l

k), (7)

where R′Π(Itk, I
t+1
k) indicates the reward obtained due to the

state transition from the augmented state Itk to the augmented
state It+1

k . The value function can be compactly written as

V̄Π = diag
(
P̄′

Π
R̄′

Π
)

+ γP̄′
Π
V̄Π

=⇒ V̄Π =
(
I− γP̄′Π

)−1

diag
(
P̄′

Π
R̄′

Π
)
, (8)

where I is an identity matrix, P̄′
Π is the |Ik| ∗ |Ik| aug-

mented state transition probability matrix (|Ik|=|S| ∗ |A|k is
the cardinality of the augmented set Ik), R̄′Π is the |Ik| ∗ |Ik|
reward matrix indicating the rewards obtained for various state
transitions and diag(X) indicates the leading diagonal of a
matrix X. When k is small, matrix inversion can be performed
fairly easily which allows one to evaluate the value of a policy
Π with transition-based rewards.

Notice that the value function V Π in (8) can be shown
to converge to the optimal policy Π∗ and that it follows
Bellman’s optimality rules [3], similar to the value functions
given in (3) and (6). We skip this proof due to a lack of
space. Also it is important to notice that this delayed learning
framework works well only with an infinite horizon since all
rewards/costs will not be collected in a finite horizon [5]. This
framework also allows one to capture the effect of uncertain
transition probability matrices i.e., in cases where the estimates
of the state transition probability P might be erroneous, which
thereby leads to errors in the estimates of the value function of
a policy Π. For more details on the loss bounds in the presence
of uncertain transition probability matrices, please see [11]. We
next demonstrate the utility of this framework with an example
that considers jamming against an 802.11-type network.

III. JAMMING VIA DELAYED LEARNING

We consider a MAC layer jamming attack scenario where
the jammer disrupts the communication between a transmitter-
receiver pair. The naive way of jamming a network is to
continuously transmit high power noise over the bandwidth
of interest that either jams the transmitter (source node) or
receiver (destination node) or both. However, this entails sig-
nificant power consumption on the jammers’ side which may
not be available. As discussed in [7], jamming can be made
energy efficient if the jammer operates based on the knowledge
of the protocol used by the wireless network that it intends
to jam. For example, jamming the control packets and/or the
pilot symbols proves to be very effective in incapacitating the
network [7].

Several metrics need to be considered when studying
jamming against a wireless network. In this paper, we restrict
ourselves to the energy expended in jamming and the wire-
less network throughput allowed as the driving metrics for
obtaining the optimal jamming strategies. It is assumed that
the transmitter and receiver are not aware of the presence of a
jammer in their vicinity (and hence not intelligent) and assume
that the packets are not received only due to bad wireless
channel conditions.

A. Protocol Description

To study jamming with delayed knowledge, we consider
an 802.11-type wireless network where the transmitter and
receiver use the RTS-CTS handshake mechanism to communi-
cate with each other [8]. The MDP model for the environment
is based on the messages exchanged i.e., we define the environ-
ment state at time t based on the packet exchanged between the
transmitter and receiver at time t. Table I shows the possible
MDP state transitions which are explained in detail below.

TABLE I. MDP MODEL STATE TRANSITIONS

Present State State Transition Condition Next State

RTS Packet Successful
Packet Unsuccessful

CTS
WAIT

CTS Packet Successful
Packet Unsuccessful

DATA
WAIT

DATA
Packet Successful
Packet Unsuccessful
Retransmission limit reached

ACK
DATA
WAIT

ACK
Packet Successful
Packet Unsuccessful
Retransmission limit reached

WAIT
DATA
WAIT

WAIT

→ Contention Window > 0
→ Contention Window=0 and
Data not available
→ Contention Window=0 and
Data available

WAIT
WAIT

RTS

When data is present for transmission, the transmitter sends
a request-to-send (RTS) message to request permission from
the receiver to transmit the information. The state of the
environment is taken to be RTS at this stage. Upon correctly
decoding the RTS, the receiver sends a clear-to-send (CTS)
message to give permission to the transmitter to proceed with
the data transmission; here the environment state is CTS. If the
receiver does not respond to the RTS message (when the RTS
packet was not received/ decoded correctly by the receiver)
within a given time interval (until which the environment state
remains in RTS), the environment enters the WAIT state.

Once the transmitter correctly receives the CTS message,
it starts with the DATA transmission, and the environment
makes a transition to the DATA state. The transmitter sends a
DATA packet to the receiver, which if received will trigger an
acknowledgement (ACK) or a no acknowledgement (NACK)
packet. For ease of analysis, we ignore the NACK packet in this
analysis and assume that a packet is not received/decoded cor-
rectly only when jamming is successful. If the transmitter does
not receive the ACK packet within a specified time interval, it
retransmits the data packets. During the data retransmission,
the state of the environment continues to be DATA. This is
done until the retransmission limit is reached, which is pre-
specified by the protocol. When this limit is reached, the
protocol enters a WAIT state where the transmitter ignores
the current data packet and starts a new data transmission by
restarting the protocol with a new RTS message. A similar
sequence of events holds true for the ACK state as well.
The only difference here is that the DATA state is due to
the transmitter and the ACK state is due to the receiver. But
as mentioned before, irrespective of whether the transmitter/
receiver generates a packet, the state of the environment is only
based on the packet being exchanged at a given time instant.

When the ACK is successful, the environment enters the
WAIT state where a new packet can now be transmitted by

sending a RTS message. Every time the protocol enters the
WAIT state, it choses a certain contention window size and
then waits for an exponential number of time slots before it
sends a new RTS message. For example, consider the case
where the possible contention window sizes range between
[CWmin, CWmax]. If the protocol enters the wait state and the
contention window size chosen is CW , the protocol stays in
the WAIT state for a random time interval that is uniformly
chosen in the interval [0, 2CW − 1], where 0 indicates that
the transition to the RTS state is instantaneous. Note that the
contention window size doubles (until it reaches CWmax) with
every unsuccessful packet transmission.

It is assumed that the sizes of the RTS, CTS and ACK
packets are the same and that the DATA packet is 10 times
longer than these packets. For ease of analysis, we model
this by taking into consideration that the energy expended in
jamming the DATA packet is 10 times that of the other packets
and that the DATA state lasts only for one time slot. However,
it is easy to extend this model to the case where each DATA
state actually lasts for 10 time slots.

B. Jamming Strategies

We initially assume that the jammer is aware of the protocol
used by the transmitter and receiver and thus knows the MDP
state transition structure, retransmission limit, and also the
contention window sizes. For instance, the contention window
sizes can be used to estimate the average time period over
which the environment stays in the WAIT state after it enters
the WAIT state. The jammer intends to learn the optimal
power efficient jamming strategy against this known MDP
model. We discuss the effects of not knowing the MDP model
in Section IV where the jammer learns the model and the
strategies by repeated interactions with the environment.

The jammer can disrupt various packets that are exchanged
in the network i.e., it can jam packets that are received either
at the transmitter (CTS, ACK) or at the receiver (RTS, DATA).
When the jammer believes that the environment state is WAIT,
it does not jam1. Thus, there are 4 other possible environment
states that the jammer can attack; {RTS, CTS, DATA, ACK}.
The MDP model with jamming is shown in Fig. 1 which
reflects the belief of the jammer about the state transitions of
the environment. For example, when the jammer believes that
the environment state is DATA, it jams with energy 10E and
in all other states it jams with energy E (the decision to jam in
a state or not depends on the jamming policy used). With two
possible actions for the jammer i.e., {Jam, Don’t Jam}, a total
of 16 different policies exist. Among these, the jammer has
to learn the optimal policy based on 1) the environment states
and 2) the costs incurred for jamming and the costs incurred
for allowing a data packet to go through un-jammed, which is
denoted by T (i.e., the cost for allowing throughput).

Since we only consider the MAC layer jamming scenarios,
the most relevant environment condition is the jamming suc-
cess probability ρ (which depends on various physical layer
parameters, which are not the concern of this paper). Initially,
we assume that the jammer has knowledge of this parameter
ρ and later we show the effects of not knowing ρ or the MDP

1Jamming the WAIT state to mimic a busy wireless channel is more relevant
when several transmit-receive pairs exist in the environment.

CTS

RTS DATA

ACKWAIT

Jammed

Not Jammed

Backo↵ Counter

TimeOut/Max Retransmissions

Fig. 1. MDP model of the 802.11-type wireless network with the RTS-CTS
protocol. The state transitions indicate the effect of a jamming attack on the
wireless network.

model that governs the environment. While the jammer can
jam and receive data simultaneously, it is not aware of the
environment state until the packet transmission is finished.
Hence, it knows the state with a one time slot delay, which
means that k = 1 in the delayed learning framework proposed
in Section II. For instance, when the RTS packet is sent by the
transmitter, the jammer understands that the RTS transmission
has occurred in the previous state (once the packet transmission
is finished) and it knows if it has not jammed this packet,
the next transmission would be CTS i.e., p(CTS|RTS, Don’t
Jam) = 1. Based on this knowledge, the jammer decides to
jam or not in the next time instant depending on the policy
being used and eventually learns the optimal jamming strategy.

C. Feedback Signals

The jammer requires feedback to learn whether its strate-
gies are optimal or not. The jammer is instantaneously aware
of the energy expended when it jams (or when it makes a
decision to jam). However, there is no instantaneous knowl-
edge regarding the throughput allowed as it depends on the
jammers’ interaction with the environment. Since the jammer
can observe the states of the environment, albeit in a delayed
manner, a cost on the throughput can be taken into account
when the jammer understands that the environment has made
a transition from the ACK state to WAIT state and if it did
not jam the ACK state. The jammer takes a probabilistic
reward i.e., (1 − ρ)T into consideration when the last ACK
retransmission enters into WAIT state. This is because the
jammer is not aware whether this state transition happened
due to successful jamming (and the transmitter-receiver pair
ignore the current packet) or an unsuccessful jamming attempt.
In both these cases, the environment makes a transition into
the WAIT state, p(ACK|WAIT) = 1, when the last (last in
terms of the retransmission limit) ACK packet is sent.

From the above discussion it is clear that the feedback on
the throughput cost is based on the state transition from ACK
to the WAIT state and not on the states themselves, which
is different from the RL problems usually studied. Thus the
delayed learning framework with transition-based rewards is
more relevant to this scenario than the traditional framework.
We next present the optimal jamming strategies obtained in
such delayed learning settings.

IV. NUMERICAL RESULTS

We study the MAC layer jamming problem by simulating
the Markovian state transitions shown in Table. I. The jammer

acts on this environment to learn the optimal strategy based
on its belief about the MDP model as shown in Fig. 1. The
reward on the energy expended is taken to be E = −10
and throughput is taken to be T = −100, unless otherwise
specified. Since both the energy and the throughput allowed
are costs, they are taken to be negative rewards and thus
the jammer attempts to maximize the cumulative reward. The
retransmission limit is taken to be 3 and the contention window
sizes are CWmin = 2 and CWmax = 4. In all simulation-
based results, we use an explore-exploit strategy with an
exponentially decreasing exploration probability [3]. In the
exploration phase, the jammer chooses a random policy (from
the 16 viable policies) and in the exploitation phase, it chooses
the policy with the maximum cumulative reward obtained thus
far. Upon choosing a policy, the jammer uses this policy to
interact with the environment over 1000 time instants (one
episode) and accumulates the rewards. The simulations run
for 3000 episodes where the jammer has a constant policy in
each episode and eventually learns the optimal policy.

A. Learning the optimal policy: MDP model and ρ known

Fig. 2 compares the learning performance (via the explore-
exploit strategy) when the jammer has instantaneous knowl-
edge of the state transitions and when this knowledge is
delayed by one time instant. It is seen that there is a small
loss in the rewards obtained due to this delayed knowledge and
that the optimal policy obtained via delayed learning performs
significantly better than the naive policies. Specifically, Fig. 2
also shows the rewards obtained when naive policies such as
random jamming, jamming all the states and jamming none
of the states are used. Table II shows the optimal jamming
policies (as a function of ρ) learned by using the explore-
exploit strategy when the observations are delayed.

When ρ is known, we can also find the theoretical op-
timal jamming policy by using the delayed learning frame-
work in Section II. To use this framework, we need to
form the matrices P ′

Π and the reward matrix R′
Π, which

can be done because the jammer has the knowledge of
the protocol and ρ. For example, when the policy cho-
sen is to jam CTS only, then we have p(CTS,Jam|RTS,
Don’t Jam)=1; p(CTS,Don’t Jam|RTS, Don’t Jam)=0;
p(DATA,Jam|CTS,Jam)=0; p(DATA,Don’t Jam|CTS,Jam)=1−
ρ; p(WAIT,Jam|CTS,Jam)=0; p(WAIT,Don’t Jam|CTS,Jam)=ρ
and so on. Along these lines, the reward matrix R(I, I ′) can
also be obtained; for example, R({ACK,Don’t Jam},{WAIT,
Don’t Jam})=−T ; R({RTS,Don’t Jam},{CTS, Jam})=0 and
so on. Table II shows that the optimal policies obtained via the
explore-exploit strategy match the optimal policies obtained by
using the delayed learning theoretical framework.

B. Intuition to the optimal policy

For ease of illustration assume that ρ = 1, and consider
the case where the transition from the WAIT state to the RTS
state is instantaneous i.e., the wait time is 0. In such a model,
if the jammer jams the RTS state alone, the environment enters
the WAIT state and the transitions to CTS, DATA and ACK
states will not occur. Thus, the throughput allowed is 0. Over
a time period of 100 time slots, the RTS state is seen 50 times
when this policy is used and thus the cost incurred is 50E.
However, if the jammer jams the CTS state alone, then it is

TABLE II. OPTIMAL JAMMING POLICIES VIA DELAYED LEARNING,
E = −10, T = −100

ρ Optimal Policy Optimal Policy
(Simulation) (Theory)

1 Jam CTS Jam CTS
[0.4, 1) Jam CTS & ACK Jam CTS & ACK

[0.2, 0.4) Jam CTS Jam CTS
[0, 0.2) Jam NONE Jam NONE

0 500 1000 1500 2000 2500 3000
−7

−6

−5

−4

−3

−2

−1
x 10

4

Episodes

R
e

w
a

rd
s
 p

e
r

e
p

is
o

d
e

Optimal Policy, Delayed Knowledge, Learn ρ

Optimal Policy, Delayed Knowledge

Optimal Policy, Instantaneous Knowledge

No Jamming, Delayed Knowledge

Jamming All States, Delayed Knowledge

Random Jamming with probability 0.5

No Jamming

Jamming All States

Instantaneous Knowledge
Mean Reward = −11500

Delayed Knowledge
 		Mean Reward= −13230

Delayed Knowledge, Learn ρ

 		Mean Reward= −13700

Random Jamming with probability 0.5

Fig. 2. Rewards obtained in various scenarios, ρ = 0.3. The rewards obtained
with instantaneous knowledge are on average better than the rewards obtained
in the delayed knowledge scenarios.

easy to see that the CTS state is seen only 25 times i.e., the
cost incurred is 25E and the throughput allowed is still 0.
Jamming the DATA state or the ACK state alone is worse
when compared to jamming the CTS state only due to 1) the
cost incurred for jamming the DATA state is 10E and 2) due to
the retransmission limit, whenever the DATA and ACK state
is seen, the jammer also jams these states which increases
the cost. Thus in this case, jamming the CTS state alone is
the optimal jamming strategy. As ρ decreases, the optimal
number of states to jam increases until a certain value of ρ
and decreases again until it reaches a point where jamming
none of the states is optimal. This behavior is also seen in
Table II.

0 10 20 30 40 50 60 70 80 90 100
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Throughput/Energy

E
n

e
rg

y

Jam RTS, CTS & ACK

Jam ALL

Jam NONE

Jam CTS & ACK

Jam CTS

Fig. 3. Optimal jamming policies as a function of the energy and throughput
costs; ρ = 0.5. The colors represent the various optimal jamming policies.

Fig. 3 shows the jamming policies as a function of the
energy and the throughput costs, where it is seen that the
optimal policies depend not only on ρ but also on the costs.

Notice that when E = 0 (no cost incurred due to jamming),
irrespective of the value of T , it is optimal to jam all the states
in order to avoid any throughput cost. Also note that as the cost
of the throughput increases, it is optimal to jam more states in
order to reduce the average throughput. When the observation
delay is small and ρ is known, the framework in Section II can
be used to find the optimal policy. Owing to matrix-inversion,
this technique will be computationally complex as the value
of k increases. The proposed RL framework can then be used
to determine the optimal jamming policies.

C. Learning ρ and the optimal policy: MDP model known

Thus far, we have considered the case where the jammer
has perfect knowledge regarding various parameters of the
environment. Fig. 2 also shows the rewards obtained when the
jammer must learn the jamming success probability ρ. Here,
the jammer jams all the states in one episode and observes the
state transitions in order to learn ρ. For example, this can be
achieved by evaluating

ρ =
N{RTS,Jam}→WAIT

NRTS
, (9)

where NRTS indicates the total number of times the state of
the environment is RTS and N{RTS,Jam}→WAIT is the number
of times that environment made a transition to the WAIT
state when the jammer jams the RTS state. Note that the
RTS state should happen frequently which allows reliable
estimation of ρ. Upon learning ρ, the jammer can then perform
exploration/exploitation over the set of policies to learn the
optimal policy. From Fig. 2, it is seen that the rewards obtained
in this case are fairly close to the rewards obtained when
the jammer has perfect knowledge about ρ. Depending on the
accuracy of the estimate of ρ, the rewards obtained will vary
as the optimal policy chosen is dependent on ρ as well.

D. Learning the MDP model, ρ and the optimal policy

We now consider a case where the jammer is not aware
of the retransmission limit, the contention window sizes and
the jamming success probability ρ. In such cases, it estimates
the state transition probabilities by interacting with the envi-
ronment. For example, the probability of transitioning to the
DATA state when the environment is already in the DATA
state helps learn the retransmission limit. Similar reasoning
holds true for the contention window size when it sees the
WAIT state i.e., it can estimate the average time period spent
in the WAIT state. Fig. 4 shows the rewards obtained when the
jammer is unaware of the underlying MDP model and learns
the model by interacting with the environment. It is seen that
the rewards obtained when the jammer learns the MDP model
and ρ are lower when compared to the rewards obtained when
it has perfect knowledge about the model and ρ (observations
are still delayed) and higher when compared to naive jamming
strategies.

V. CONCLUSION

In this paper, we explored whether a jammer can learn
its surroundings in an electronic warfare-type scenario. We
addressed the problem from a RL perspective wherein the
jammer has delayed information regarding the environment
which is different from the assumptions made in the previous

0 500 1000 1500 2000 2500 3000
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5
x 10

4

Episodes

R
e

w
a

rd
s
 p

e
r

e
p

is
o

d
e

Jamming All States

Random Jamming with probability 0.3

Model and ρ known

Mean Reward = −8965

No Jamming Learn Model and ρ

Mean Reward = −11410

Fig. 4. Rewards obtained when jammer is uncertain about the underlying
MDP model and ρ and learns it by interacting with the environment; ρ = 0.5.

literature. For this, we proposed a novel delayed learning
framework with transition-based rewards, that allows us to
handle the realistic case of delayed knowledge. This framework
models the original MDP as an equivalent augmented MDP
by increasing the state space to incorporate the delays. The
benefits of such a framework were illustrated via a jamming
scenario where we obtained the optimal jamming policy of a
power efficient jammer that minimizes the combined through-
put allowed and energy expended. Specifically, we modeled
an 802.11-type wireless network and the associated states as a
MDP and the jammer as an agent that acts over this MDP to
learn the optimal actions. It was seen that the optimal policies
depend on the costs incurred for jamming, throughput allowed
in the network and also the jamming success probability.

REFERENCES

[1] J. Mitola, III, “Cognitive Radio: An Integrated Agent Architecture
for Software Defined Radio,” PhD thesis, KTH, Stockholm, Sweden,
May 2000.

[2] S. M. Dudley et al., “Practical Issues for Spectrum Management With
Cognitive Radios,” IEEE Proc., vol. 102, no. 3, pp. 242-264, Mar. 2014.

[3] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduc-
tion,” MIT Press, Cambridge, MA, 1998.

[4] T. J. Walsh, A. Nouri, L. Li, and M. L. Littman, “Learning and planning
in environments with delayed feedback,” Auton. Agent. Multi-Agent Syst.,
vol. 18, no. 1, pp. 83-105, Aug. 2009.

[5] K. V. Katsikopoulos and S. E. Engelbrecht, “Markov Decision Processes
With Delays and Asynchronous Cost Collection,” IEEE Trans. Autom.
Control, vol. 48, no. 4, pp. 568-574, Apr. 2003.

[6] P. Joulani, A. György, and C. Szepesvári, “Online Learning under
Delayed Feedback,” in Proc. Int. Conf. Mach. Learning, Atlanta, GA,
Jun. 2013.

[7] D. J. Thuente and M. Acharya, “Intelligent Jamming in Wireless Net-
works with Applications to 802.11b and Other Networks,” in Proc. IEEE
MILCOM, Washington DC, USA, Oct. 2006, pp. 1075-1081.

[8] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed
coordination function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3,
pp. 535-547, Mar. 2000.

[9] M. Bkassiny, Y. Li, and S. Jayaweera, “A Survey on Machine-Learning
Techniques in Cognitive Radios,” IEEE Commun. Surveys and Tutorials,
vol. 15, no. 3, pp. 1136-1159, Jul. 2013.

[10] D. M. Brooks and C. T. Leondes, “Markov Decision Processes
with State-Information Lag,” Opns. Res., vol. 20, no. 4, pp. 904-907,
Aug. 1972.

[11] A. Mastin and P. Jaillet, “Loss Bounds for Uncertain Transition Proba-
bilities in Markov Decision Processes,” in Proc. Conf. Dec. and Control.,
Maui, Hawaii, Dec. 2012, pp. 6708-6715.

