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Abstract—Can an intelligent jammer learn and adapt to
unknown environments in an electronic warfare-type scenario? In
this paper, we answer this question in the positive, by developing
a cognitive jammer that disrupts the communication between
a victim transmitter-receiver pair. We formalize the problem
using a novel multi-armed bandit framework where the jammer
can choose various physical layer parameters such as signaling
scheme, power level and the on-off/pulsing duration in an attempt
to obtain power efficient jamming strategies. We first present
novel online learning algorithms to maximize the jamming
efficacy against static transmitter-receiver pairs i.e., the case
when the victim does not change its communication technique
despite the presence of interference. We prove that our learning
algorithm converges to the optimal jamming strategy. Even more
importantly, we prove that the rate of convergence to the optimal
jamming strategy is sub-linear, i.e. the learning is fast, which is
important in dynamically changing wireless environments. Also,
we characterize the performance of the proposed bandit-based
learning algorithm against adaptive transmitter-receiver pairs.

I. INTRODUCTION

The vulnerabilities of a wireless system can be largely
classified based on the capability of an adversary- a) an eaves-
dropping attack in which the eavesdropper (passive adversary)
can listen to the wireless channel and decipher information, b)
a jamming attack, in which the jammer (active adversary) can
transmit energy in order to disrupt reliable communication and
c) hybrid attack, in which the adversary can either passively
eavesdrop or actively jam any ongoing transmission. In this
paper, we study the effects of jamming attacks against static
and adaptive victim transmitter-receiver pairs.

Most of the prior work studies jamming using an optimiza-
tion or game-theoretic or information-theoretic framework [1]-
[5]. The major disadvantage of these studies is that they assume
the jammer has a lot of a priori information about the strategies
used by the (malicious) transmitter-receiver pairs, channel
gains, etc., which may not be available in practical scenarios.
For instance, in our prior work [3], we showed that the optimal
jamming signal follows a pulsed-jamming strategy, and derived
the optimal pulse duration given that the jammer knows the
transmission strategy of the victim transmitter-receiver pair. In
contrast to prior work, in this paper we develop online learning
algorithms for the jammer that learns the optimal jamming
strategy by repeatedly interacting with the victim transmitter-
receiver pair. Essentially, the jammer must learn to act in an
unknown environment in order to maximize its total reward
(e.g., jamming success rate).

Numerous approaches have been proposed to learn how to
act in such unknown communication environments. A canoni-
cal example is reinforcement learning (RL) [6]-[11], in which
a radio (agent) learns and adapts its transmission strategy
using the transmission success feedback of the transmission
actions it has used in the past. In general, this feedback is
referred to as the reward, and over time the agent learns

to take actions which yield higher rewards. For instance,
the reward can be throughput, the negative of the energy
cost, or a function of both these variables. In [6], [7], Q-
Learning based algorithms are used to address jamming and
anti-jamming strategies against adaptive opponents. It is well-
known that such learning algorithms can guarantee optimality
only asymptotically (as the number of packet transmissions
goes to infinity). However, strategies with only asymptotic
guarantees cannot be relied upon in mission-critical/ military
applications, where failure to achieve the required performance
level in a dynamic setting will have severe consequences. For
example, in jamming applications, the jammer needs to learn
and adapt its strategy against its opponent in a timely manner.
Hence, the rate of learning matters.

In this paper we consider all of the above challenges,
and develop novel multi-armed bandit (MAB)-based jamming
algorithms that provide time-dependent (not asymptotic) per-
formance bounds on the jamming performance against static
and adaptive victim transmitter-receiver pairs. MAB-based
algorithms [12]-[14] have been used in the context of wireless
communications to address the selection of a wireless channel
in either cognitive radio networks [8], [9] or in the presence
of an adversary [10], or antenna selection in MIMO systems
[11]. To the best of our knowledge, none of these works
addressed jamming scenarios and an associated challenging
problem of jointly adapting various physical layer parameters
such as modulation/signaling scheme, signal power, etc., that
can either come from a continuous space or a discrete space.

TABLE I: Comparison between related bandit works

Finite armed Continuum armed Adversarial Our work
bandits [12] bandits [13] bandits [14]

Regret bounds Logarithmic Sublinear Sublinear Sublinear
(function of time)

Action rewards i.i.d i.i.d adversarial i.i.d
(worst-case)

Action set finite continuous finite mixed
Similarity assumed assumed assumed proven

between rewards (Theorem 1)

The differences between our work and the prior bandit
related works are summarized in Table I. We measure the
jamming performance of a learning algorithm using the notion
of regret, which is defined as the difference between the
cumulative reward of the optimal jamming strategy when there
is complete knowledge about the victim, and the cumulative
reward achieved by the learning algorithm. Any algorithm
with a sub-linear in time regret, will converge to the optimal
strategy in terms of the average reward. Hence, the regret
bounds provide a rate on how fast the jammer converges to
the optimal strategy without having any a priori knowledge
about the victim’s strategy and the wireless channel.

The rest of the paper is organized as follows. We introduce
the system model in Section II. The jamming performance
against a static transmitter-receiver pair is considered in Sec-



tion III, where we develop novel learning algorithms for the
jammer and present high confidence bounds for the jam-
mers’ learning performance. Numerical results are presented
in Section IV where we study the behavior of the learning
algorithms in both single user and multi-user scenarios and
finally conclude the paper in Section V.

II. SYSTEM MODEL

We first consider a single jammer and a single victim
transmitter-receiver pair in a discrete time setting (t =
1, 2, . . .). We assume that the data conveyed between the
transmitter-receiver pair is mapped onto an unknown digital
amplitude-phase constellation. The low pass equivalent of this
signal is represented as x(t) =

∑∞
m=−∞

√
Pxxmg(t −mT ),

where Px is the average received signal power, g(t) is the
real valued pulse shape and T is the symbol interval. The
random variables xm denote the modulated symbols assumed
to be uniformly distributed among all possible constellation
points. Without loss of generality, the average energy of g(t)
and modulated symbols E(|xm|2) are normalized to unity.

It is assumed that x(t) passes through an AWGN channel
(received power is constant over the observation interval) while
being attacked by a jamming signal represented as j(t) =∑∞
m=−∞

√
PJjmg(t−mT ), where PJ is the average jamming

signal power as seen at the victim receiver and jm denote the
jamming signals with E(|jm|2) ≤ 1. Assuming a coherent
receiver and perfect synchronization, the received signal after
matched filtering and sampling at the symbol intervals is given
by yk = y(t = kT ) =

√
Pxxk +

√
PJjk + nk, k = 1, 2, ..,

where nk is the zero-mean additive white Gaussian noise with
variance denoted by σ2. Let SNR = Px

σ2 and JNR = PJ
σ2 .

III. JAMMING AGAINST A STATIC
TRANSMITTER-RECEIVER PAIR

In this section, we consider the scenario where the victim
uses a fixed modulation scheme with a fixed SNR. We propose
an online learning algorithm for the jammer which learns the
optimal power efficient jamming strategy over time, without
knowing the victim’s transmission strategy.
A. Set of actions for the jammer

At each time t the jammer chooses its signaling scheme,
power level and on-off/pulsing duration. A joint selection of
these is also referred to as an action. We assume that the set of
signaling schemes has Nmod elements, while the set of power
levels is JNR ∈ [JNRmin, JNRmax]. The jamming signal j(t)
is defined by the signaling scheme and power level selected at
time t. It is shown in [3] that the optimal jamming signal does
not have a fixed power level, and it should alternate between
two different power levels one of which is 0. In other words,
the jammer sends the jamming signal j at power level JNR/ρ
with probability ρ and at 0 (i.e., no jamming signal is sent) with
probability 1 − ρ. Notice that the pulsed-jamming strategies
enable the jammer to create errors in the packet with a low
average energy but a high instantaneous energy [3]. Hence,
the optimal jamming signal is characterized by the signaling
scheme, the average power level and the pulse duration ρ ∈
(0, 1] which indicates the fraction of time that the jammer is
turned on. The jammer should learn these optimal physical
layer parameters first by transmitting the jamming signal and
then by observing the reward obtained for its actions.

We formulate this learning problem as a mixed multi-armed
bandit (mixed-MAB) problem. Different from prior work on
MAB problems, in a mixed-MAB the action space consists
of both finite (signaling set) and continuum (power level,
pulse duration) sets of actions. Next, we propose an online
learning algorithm called Jamming Bandits (JB) where the
jammer learns by repeatedly interacting with the transmitter-
receiver pair. As mentioned, the jammer receives feedback
about its jamming actions which can be in terms of the symbol
error rate (SER) or packet error rate (PER) inflicted by
the jammer at the victim receiver, throughput allowed [15],
among many others. In this paper, we consider the feedback
to be in terms of the error rates SER and PER which is
inherently a function of the jamming signal j(t). Notice that
the jammer can estimate the error rates by only observing the
acknowledgment /no acknowledgement (ACK/NACK) packets
that are exchanged between the transmitter-receiver pair1 [16].

B. MAB formulation

The actions (also called the arms) of the mixed MAB
are defined by the triplet [Signaling scheme, JNR, ρ]. For a
given signaling scheme J , the strategy set S (that constitutes
JNR and ρ) is a compact subset of (R+)2. For each time
t ∈ {1, 2, 3, . . . , n}, a cost function (feedback metric) Ct :
{J ,S} → R is evaluated. Since we are interested in finding
power efficient mechanisms to maximize the error rate at the
victim receiver, we define Ct = SERt/JNRt or PERt/JNRt

where JNRt indicates the JNR used by the jammer at time
t and SERt, PERt are the average symbol/packet error rate
obtained by using a particular strategy {J , s ∈ S} at time
t. This cost function is unknown to the jammer a priori and
needs to be learned over time in order to optimize its jamming
strategy.

Since the action set is a continuum of arms, it is assumed
that the arms that are close to each other (in terms of
the Euclidean distance), yield similar expected costs. Such
assumptions on the cost function will at least help in learning
strategies that are close to the optimal strategy (in terms
of the achievable cost function) if not the optimal strategy,
especially when we consider learning continuous parameters
[13]. Formally, the expected or average cost function C̄(J , s) :
{J ,S} → R is assumed to be uniformly locally Hölder
continuous with constant L ∈ [0,∞) and exponent α ∈ (0, 1].
More specifically, the Hölder condition (which is described
with respect to the continuous arm parameters) is given by,

|C̄(J , s)− C̄(J , s′)| ≤ L||s− s′||α, (1)

for all s, s′ ∈ S with ||s− s′|| ≤ δ > 0 [17] (||s|| denotes the
Euclidean norm of the vector s). The best strategy s∗ satisfies
arg mins∈S C̄(J , s) for a signaling scheme J . We assume
that the jammer knows (1) i.e., L and α. The next theorem
shows that this similarity assumption holds true when the cost
function is SER.

Theorem 1. SER is uniformly locally Hölder continuous.

Proof : See the longer version of this paper [18] for the
proof and examples that validate this Theorem.

1The number of NACKs gives an estimate of the PER. SER can be
estimated as 1− (1−PER)1/Nsym where Nsym is the number of symbols
in one packet.



The result in this theorem is crucial for deriving the
regret and high confidence bounds of the proposed learning
algorithm. Unlike existing works in MAB, which assume
Hölder (or Lipschitz) continuity to derive the regret bounds, the
above theorem proves that this condition holds in our setting,
i.e., it is not an assumption but rather an intrinsic (proven)
feature of our problem.

Corollary 1. PER and PER/JNR are Hölder continuous.

C. Proposed Algorithm

The proposed Jamming Bandits (JB) algorithm is shown in
Algorithm 1. At each time t, JB forms an estimate Ĉt on the
cost function C̄, which is an average of the costs observed over
the first t−1 time slots. However, since some dimensions of the
joint action set are continuous, JB discretizes them and then
approximately learns the cost function among these discretized
versions. For example, ρ is discretized as {1/M, 2/M, . . . , 1}
and JNR is discretized as JNRmin + (JNRmax − JNRmin) ∗
{1/M, 2/M, . . . , 1}, where M is the discretization parameter.
Later, we will compute the optimal values of M .

JB divides the entire time horizon n into several rounds
with different durations. Within every round (the duration T
of each round is also adaptive as shown in Alg. 1), JB uses a
different discretization parameter M to create the discretized
joint action set, and learns the best jamming strategy over this
set, as shown in Fig. 1. The resolution M increases in the
number of rounds. Its value given in line 2 of Algorithm 1 is
chosen such that the regret is optimized.

Algorithm 1 Jamming Bandits (JB)

T← 1
1: while T ≤ n do
2: M ← d(

√
T

logT L2α/2)
1

1+α e
3: Initialize UCB1 algorithm [12] with strategy set
{AWGN,BPSK,QPSK}×{1/M, 2/M, . . . , 1}×JNRmin +
(JNRmax − JNRmin) ∗ {1/M, 2/M, . . . , 1}, where × in-
dicates the Cartesian product.

4: for t = T, T + 1, . . . ,min(2T − 1, n) do
5: Get strategy {Jt, st} from UCB1 [12]
6: Play {Jt, st} and receive the feedback Ct(Jt, st)
7: For each arm in the strategy set, update its index

using Ct(Jt, st).
8: end for
9: T ← 2T

10: end while

Another advantage of JB is that the jammer does not need
to know the time horizon n. Time horizon n is only given as
an input to JB to indicate the stopping time. All our results in
this paper hold true for any time horizon n. This is achieved
by increasing the time duration of the inner loop in JB to 2T
at the end of every round. The inner loop can use any of the
standard finite armed MAB algorithms such as UCB1 [12].

D. Upper bound on the regret

The n-step regret Rn is the expected difference in
the total cost between the strategies chosen by the pro-
posed algorithm i.e., {J1, s1}, {J1, s2}, . . . , {Jn, sn} and the
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Fig. 1: An illustration of learning in one round of JB.
best strategy {J ∗, s∗}. More specifically, we have Rn =

E
[∑n

t=1 Ct(J ∗, s∗) − Ct(Jt, st)
]
, where the expectation is

taken over the random feedback signals.

Theorem 2. The regret of JB is O(Nmodn
α+2

2(α+1) (logn)
α

2(α+1) ).

Proof : The proof of the Theorem is based on the Hölder
continuity properties of the cost function established in Theo-
rem 1. See [18] for more details.

Remark 1. The upper bound on regret increases as Nmod
increases. This is because the jammer now has to spend more
time in identifying the optimal jamming signaling scheme. This
does not mean that the jammer is doing worse, since as Nmod
increases, the jamming performance of the benchmark against
which the regret is calculated also gets better. Hence, the
jammer will converge to a better strategy, though it learns
slowly. Further, the regret decreases as α increases because
higher values of α indicate that it is easier to separate
strategies that are close (in Euclidean distance) to each other.

Corollary 2. The average cumulative regret of JB converges
to 0. Its convergence rate is given as O(n

−α
2(α+1) (logn)

α
2(α+1) ).

The average cumulative regret converges to 0 as n in-
creases. These results establish the learning performance i.e.,
the rate of learning (how fast the regret converges to 0) of JB
and indicate the speed at which the jammer learns the optimal
jamming strategy using Algorithm 1.

E. High Confidence Bounds

The confidence bounds provide an a priori probabilistic
guarantee on the desired level of jamming performance (e.g.,
SER or PER) that can be achieved at a given time.

The sub-optimality gap of the ith arm, denoted by {J i, si}
(recall that NmodM2 arms can be chosen in one round of JB),
is defined as C̄(J ∗, s∗) − C̄(J i, si). We say that an arm is
sub-optimal if it belongs to the set U>, which is defined in the
Appendix. Let ui(t) denote the total number of times the ith
arm has been chosen until time t and U(T ) indicate the set
of time instants t ∈ [1, T ] for which ui(t) ≤ 8 log(T )

∆2
i

for some
sub-optimal arm i ∈ U> with a sub-optimality gap ∆i [18].

Theorem 3. Let δ = 2 × 2
3α+2

2(1+α)L
1

1+α

(
logT
T

) α
2(1+α)

. Then
for any t ∈ [1, T ]\U(T ), with probability at least 1 −
2(Nmod + M2)t−4, the expected cost of the chosen jam-
ming strategy (Jt, st) is at most C̄(J ∗, s∗) + δ. In other
words, P

(
C̄(J ∗, s∗)− C̄(Jt, st) > δ

)
≤ 2(Nmod +M2)t−4.



We also have E[|U(T )|] ≤ ∑T
t=1 P (a sub-optimal arm i ∈

U> is chosen at t) ≤ 8
∑
i∈U>

(
log T
∆2
i

)
+
(

1 + π2

3

)
|U>|,

which means that our confidence bounds hold in all except
logarithmically many time slots in expectation. As the number
of rounds increases we have T →∞, which implies that

lim
T→∞

lim
t→T

P
(
C̄(J ∗, s∗)− C̄(Jt, st) > δ

)
= 0.

Hence, the one-step regret converges to zero in probability.

Proof: See [18] for the proof and more details on how the
jammer can estimate U(T ).

To achieve a desired confidence level (e.g., about the
SER inflicted at the victim receiver) δ at each time
step, the probability of choosing a jamming action that
incurs regret more than δ must be very small. In or-
der to achieve this objective, the jammer can set M as

max{( 2
α+4
2 L
δ )1/α, d(

√
T

logT L2α/2)
1

1+α e}. By doing this, the
jammer will not only guarantee a small regret at every time
step, but also chooses an arm that is within δ of the optimal
arm at every time step with high probability. Hence, the one
time step confidence about the jamming performance can be
translated into overall jamming confidence. It was however
observed that the proposed algorithm performs significantly
better than predicted by this bound (Section IV).

Theorem 4. Let δ = 2×2
5α+4

2(1+α)L
1

1+α

(
logT
T

) α
2(1+α)

. Then, for
any t ∈ [1, T ]\U(T ), the jammer knows that with probability
at least 1−2(Nmod+M2)t−4−t−16, the true expected cost of
the optimal strategy is at most Ĉ(Jt, st) + δ, where Ĉ(Jt, st)
is the sample mean estimate of the expected reward of strategy
(Jt, st) selected by the jammer at time t.

Proof: See Appendix. This Theorem presents a high con-
fidence bound on the estimated cost function of any strategy
used by the jammer. Such high confidence bounds will enable
the jammer to make decisions on the jamming duration and
jamming budget, which is explained below with an example.

Remark 2. Fig. 2 summarizes the importance and usability
of Theorems 3 and 4 in real-time environments. The high
confidence bounds for the regret help the jammer decide the
number of symbols (or packets) to be jammed to disrupt
the communication between the transmitter-receiver pair. For
example, such confidence is necessary in scenarios where the
victim uses erasure or rateless codes and/or HARQ-based
transmission schemes. For instance, when M = 15, we have
at large time t, δ > 0.01, i.e., P (SER∗− ˆSERt > 0.01) = 0,
where SER∗ is the optimal average SER achievable and

ˆSERt is the estimated SER achieved by the strategy used
at time t. If the jammer estimates SER as 0.065 then the best
estimate of the SER∗ indicates that it is less than or equal
to 0.075. Using such knowledge, the jammer can identify the
minimum number of packets it has to jam so as to disrupt the
communication and prevent the exchange of a certain number
of packets, which in applications such as video transmission
can completely break down the system.

IV. NUMERICAL RESULTS

We first discuss the learning behavior of the jammer against
a transmitter-receiver pair that employs a static strategy and
later consider the performance against adaptive strategies. To
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Fig. 2: Using Theorems 3 and 4 in a real time jamming
environment.

validate the learning performance, we compare the results
against the optimal jamming signals that are obtained when
the jammer has complete knowledge about the victim [3]. It
is assumed that the victim and the jammer send 1 packet with
Nsym = 10000 symbols at any time t. Each time instant is
typically of the order of µs (micro seconds) as is usually
the case in modern day wireless standards such as LTE. A
packet is said to be in error if at least 10% of the symbols
are received in error at the victim receiver so as to capture
the effect of error correction coding schemes. The minimum
and the maximum SNR, JNR levels are taken to be 0 dB
and 20 dB respectively. The set of signaling schemes for
the transmitter-receiver pair is {BPSK,QPSK} and for the
jammer is {AWGN,BPSK,QPSK} [3] i.e., Nmod = 3.

A. Jamming Performance Against a Static Victim

To enable comparison with [3], we first consider a scenario
where the JNR is fixed and the jammer chooses the signaling
scheme J and ρ. Note that unlike [3], the jammer here does
not know the signaling parameters of the victim signal, and
hence it cannot solve the optimization problems in [3] to find
the optimal jamming strategy. In contrast, it learns over time
the optimal strategy by simply learning the expected reward
of each strategy it tries.

For a fair comparison with [3], we initially assume that
the jammer can estimate the SER as seen at the victim
receiver. We will shortly discuss the more practical setting in
which the jammer can only estimate PER. Fig. 3 shows the
average SER attained by JB as a function of time. This figure
also shows the performance of ε-greedy learning algorithm
with exponentially decreasing exploration probability ε

t
10 (to

allow high exploration, the initial exploration probability ε is
set to 0.9) and resolution factors M = 5, 10, 20 (arbitrarily
chosen since the optimal value is not known a priori). The
performance of ε-greedy algorithm highly depends on M , and
it can be suboptimal if M is chosen incorrectly. However, in
our learning setting it is not possible to know the optimal M
a priori. Also, the performance of AWGN jamming (which is
the most widely used jamming signal when the jammer is not
intelligent) is significantly lower than the performance of JB.

Fig. 4 shows the learning performance in terms of the
average PER (by observing the ACKs/NACKs) inflicted by
the jammer at the victim receiver. While the jammer learns
to use BPSK as the optimal signaling scheme, the optimal ρ
value learned in this case is 0.23 which is different from the
value of ρ learned in Fig. 3. This is because PER is used as
the cost function in learning the jamming strategies. It is clear
that both the AWGN jamming and ε-greedy learning algorithm
(that uses a suboptimal value of M ) achieve a PER = 0 based
on the SER results in Fig. 3. Even in this case, JB outperforms
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traditional jamming techniques that use AWGN or the ε-greedy
learning algorithm.

Fig. 5 shows the confidence levels as predicted by the one-
step regret bound in Theorem 3 and that is achieved by JB.
The cost function is taken as max(0, (PER−0.8)/JNR) (it is
Hölder continuous and is bounded in [0, 1]) to ensure that the
jammer only chooses strategies which achieve at least 80%
PER (achieving a target PER is a common requirement).
The optimal reward is estimated by performing an extensive
grid search (M = 100) over the entire strategy set. The steps
in logδ seen in Fig. 5 are due to change in M as shown in
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Fig. 6: Learning against a victim with stochastic strategies. The
figure shows the power levels adaptation by the jammer using a
drifting algorithm and that of the victim.

Algorithm 1. As mentioned before, the algorithm performs
much better than predicted by Theorem 3.

B. Jamming Performance Against an Adaptive Victim

When the victim changes its strategy rapidly, JB cannot
track the changes perfectly because it learns over all past
information, and prior information may not convey knowledge
about the current strategy used by the victim which can be
completely different from the prior strategy. In such cases, it
is important to learn only from recent past history, which can
be achieved by using JB on a recent window of past history (for
instance, a sliding window-based algorithm to track changes
in the environment) [19]. Specifically, we consider the sliding-
window method proposed in [19] to run multiple instances of
JB with a window length 25000. For this modified version of
JB Fig. 6 shows the jammers’ power level adaption when the
victim is varying its power levels across time. The dips seen
at regular intervals in Fig. 6 are due to the proposed sliding
window-based algorithm where the user resets the algorithm at
regular intervals to adapt to the changing wireless environment.
The PER achieved by this algorithm is similar to the results
shown in Figs. 4, 5 in comparison to other jamming techniques.
These results successfully illustrate the adaptive capabilities
of the proposed learning algorithms and also their universal
applicability across various jamming scenarios.

C. Multiple Users

In this subsection, we consider a case when the jammer
uses an omnidirectional antenna and intends to jam two
transmitter-receiver pairs (users) in a network. Similar to the
previous subsection, we assume that the users are adaptive.
The jammer considers the mean PER seen at both these
users as feedback to gauge the performance of its jamming
actions (it is assumed that the jammer can differentiate be-
tween the two users’ ACK/NACK packets). Fig. 7 shows the
performance of the JB algorithm against the two users that are
randomly changing their power levels to overcome interference
(this captures a much more difficult scenario as compared to
standard adaptive mechanisms in which the user increases its
power level until it reaches a maximum so as to overcome
interference). Although each user has a different adaption cycle
(specifically, user 1 changes its power levels based on the
performance history over the past 50000 time instants and user
2 adapts its power levels over a window of size 30000 time
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Fig. 7: PER achieved by the jammer against 2 stochastic
users in the network. Both the users use BPSK signaling. The
jammer learns to use BPSK to achieve power efficient jamming
strategies and also tracks the changes in the users’ strategies.

instants), the jammer is capable of tracking these changes in a
satisfactory manner. Further, by using a weighted PER metric
rather than a mean PER metric, the jammer can prioritize
jamming one victim against the others.

V. CONCLUSION

In this paper, we studied whether or not a cognitive
jammer can learn the optimal physical layer jamming strategy
in an electronic warfare-type scenario without having any a
priori knowledge about the system dynamics. Novel learning
algorithms based on the multi-armed bandit framework were
proposed to optimally jam malicious transmitter-receiver pairs.
The learning algorithms were capable of learning the optimal
jamming strategies that were known from previous works and
were also capable of tracking the different strategies used by
adaptive transmitter-receiver pairs. Moreover, they come with
strong theoretical guarantees on the performance including
confidence bounds which are used to estimate the probability
of successful jamming at a particular time instant.
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APPENDIX

U> ⊆ J> ∪S>, where J> is the set of signaling schemes
{J k}Nmodk=1 with sub-optimality gap ∆Jk = C̄(J ∗, s∗) −
C̄(J k, s∗) > δ/4 and S> is the set of {JNR, ρ} with sub-
optimality gap ∆Sk = C̄(J , s′)− C̄(J , sk)>δ/4 ∀k ∈ [1,M2]
and any signaling scheme J . Here s′ is the closest discretized
strategy to s∗ among M2 strategies. See [18] for more details.
Proof of Theorem 4:

A high confidence bound on the mean estimate of the
reward/cost function for any strategy that is used at time t by
the jammer is presented. To do so, we evaluate P (C̄(J ∗, s∗)−
Ĉ(Jt, st) > δ) as follows,

P (C̄(J ∗, s∗)− Ĉ(Jt, st) > δ) ≤ P (C̄(J ∗, s∗)− C̄(Jt, st) >
δ

2
)

+ P (C̄(Jt, st)− Ĉ(Jt, st) >
δ

2
), (2)

where C̄(Jt, st) is the actual mean reward/cost of the strategy
(Jt, st). The first term can be bounded using Theorem 3 where
it can be shown to be less than 2(Nmod +M2)t−4 for all δ >

2
5α+4

2(1+α)L
1

1+α

(
logT
T

) α
2(1+α)

. For the second term, notice that
we are comparing the actual and estimated mean rewards of
the strategy (Jt, st) which can be bounded using the Chernoff-
Hoeffding bound and the properties of the UCB1 algorithm
[12] as follows,

P (C̄(Jt, st)− Ĉ(Jt, st) >
δ

2
) ≤ exp(−utδ

2

2
), (3)

where ut is the total number of times the strategy (Jt, st)
has been used until time t. Since we use the UCB1 algorithm
within JB, when each arm is chosen atleast 8logt

∆2
t

number of
times until time t (where ∆t = C̄(J ∗, s∗) − C̄(Jt, st) is
the regret incurred by the strategy (Jt, st)) the probability of
choosing a suboptimal arm < 2t−4 (see [12]). By using the
bound on the first term in (2) which is established in Theo-
rem 3, we have that ∆t ≤ δ/2 with high probability. Thus, we
have for the second term that P (C̄(Jt, st)−Ĉ(Jt, st) > δ

2 ) ≤
exp(−16logt) = t−16 which converges to 0 as t increases.


