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Abstract— Intelligent Transportation Systems (ITS) have
emerged to utilize different technologies to enhance the perfor-
mance and quality of transportation networks. Many applica-
tions of ITS need to have a highly accurate location information
from the vehicles in a network. The Global Positioning System
(GPS) is the most common and accessible technique for vehi-
cle localization. However, conventional localization techniques
which mostly rely on GPS technology are not able to provide re-
liable positioning accuracy in all situations. This paper presents
an integrated localization algorithm that exploits all possible
data from different resources including GPS, radio-frequency
identification, vehicle-to-vehicle and vehicle-to-infrastructure
communications, and dead reckoning. A localization algorithm
is also introduced which only utilizes those resources that are
most useful when several resources are available. A close-to-
real-world scenario has been developed to evaluate the perfor-
mance of the proposed algorithms under different situations.
Simulation results show that using the proposed algorithms
the vehicles can improve localization accuracy significantly in
situations when GPS is weak.

I. INTRODUCTION

The increasing need for mobility results in more traffic

and congestion in cities, suburban areas, and even interstate

highways. More vehicular traffic results in more accidents

and emergency situations. Many think building new roads

and repairing aging infrastructure are the best approaches for

addressing these problems [1]. However, a brighter future

for transportation can be obtained by using information

technology within the transportation system and making it

more intelligent. Intelligent Transportation Systems (ITS)

exploiting different synergistic technologies have emerged

to improve the safety and quality of transportation networks

[1]. ITS have many applications from collision warning

to law enforcement and environmental monitoring. Most

applications of the ITS rely on accurate location information

from the elements of the transportation network.

The most accessible vehicle navigation technique is the

Global Positioning System (GPS). However, it is well-known

that GPS cannot provide precise location information in

all situations [2]. In other words, GPS receivers are unre-

liable in dense environments (e.g., urban canyons), indoor

environments (e.g., parking garages, tunnels), or anywhere

else without a direct view to sufficient number of satellites.

However, several applications of ITS still require the location
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information of the elements in these places. Several tech-

niques have been proposed to enhance the performance of

GPS in such environments [3], [4].

Vehicular communications has been developed as a part

of ITS which enables vehicles to broadcast their vital in-

formation to the neighboring nodes including infrastruc-

ture (Vehicle-to-Infrastructure or V2I), vehicles (Vehicle-

to-Vehicle or V2V), and pedestrians (Vehicle-to-Pedestrian

or V2P). To facilitate less interference communication, the

United States Federal Communications Commission (FCC)

has allocated 75 MHz of spectrum in the 5.9GHz band to

vehicular communications which is referred to as Dedicated

Short-Range Communications (DSRC). Vehicular commu-

nications can be employed not only for data exchange but

also for positioning purposes. In particular, the infrastructure

can play the role of GPS satellites [5]. Note that V2I com-

munications refers to any form of communication between a

vehicle and a static device with an exact known location (the

so called anchor node). For instance, it can be done through

a DSRC between the On-Board Equipment (OBE) installed

in the vehicle and Roadside Equipment (RSE) installed at a

traffic light [6], through cellular communications between

the cellphone of the driver and the network base station

[7], [8], or through a wireless sensor network operating in

an unlicensed band [9], [10]. Similar to GPS, V2I commu-

nications can provide absolute vehicle locations. However,

building infrastructure for this purpose can be expensive.

Hence, V2V and V2P communications can be also used as

alternatives [4], [11], [12]. Incorporating V2V and V2P in

positioning is referred to as cooperative positioning where

a vehicle communicates to other nearby nodes and uses

their information to improve its location estimation [13]. It

has been shown that using V2V ranging along with GPS

can improve the positioning accuracy in comparison with

standalone GPS techniques [14] and [15]. However, V2V and

V2P communications can only provide relative positions of

the vehicles and not their absolute ones. Therefore, V2V and

V2P ranging would be beneficial only when vehicles have

their approximate locations from a GPS receiver or a static

device with an exact known location. In the case of a GPS

outage, vehicles do not have their approximate locations and

V2V and V2P communications cannot provide significant

improvement.

Another technique to enhance the accuracy of GPS lo-

calization is map matching [4], [16], [17], where several

databases including maps and information of the transporta-

tion network are incorporated in vehicle positioning. The

processing time of location estimation using this method is



typically high. Another disadvantage of these techniques is

that GPS reception is required to have a reasonable accuracy,

otherwise map matching would be useless.

Dead reckoning (DR) is another technique used to improve

the positioning accuracy. In DR, previous information (loca-

tion and velocity) is used to predict future information which

helps the vehicle find its location more precisely [18], [19].

However, similar to V2V communications, DR techniques

are useful only when GPS or a static device with exact known

location are used to provide the approximate locations of the

vehicle. The estimation error of DR techniques can be very

large when DR is being used for a long period of time in case

of GPS outage, as DR estimates the location of the vehicle

merely based on prediction and previous estimates.

Several studies suggest incorporating radio-frequency

identification (RFID) technology to improve the GPS accu-

racy [20], [21]. Although RFID results in more accurate lo-

calization, its performance relies heavily on GPS and would

not be reliable in cases where GPS outages can happen. This

technology can improve the positioning accuracy in places

where GPS access is limited. However, stand-alone RFID

cannot provide good accuracy indoors such as in parking

garages and tunnels where GPS receivers do not operate

at all.

In most of the studies mentioned above, an additional

resource (V2I, V2V,V2P, RFID, and DR) to the standalone

GPS is utilized to help the vehicle localize itself. Unlike

previous studies, this study is not restricted to only one of

the resources. An Integrated algorithm is proposed which

enables the vehicle to use all different positioning techniques

including GPS, RFID, V2I, and V2V. The proposed algo-

rithm does not merely rely on any individual signal, but

it can utilize them whenever any of them are available.

For instance, unlike most previous studies in which the

vehicle has to be connected to at least several GPS satellites,

the proposed algorithm uses GPS satellites only when they

are available and useful. A comprehensive evaluation and

comparison is conducted to demonstrate the effectiveness of

different positioning technologies for different environments.

We also studied the performance of the Integrated algo-

rithm in dense environments, such as Downtown Manhattan

in N.Y. In such environments, there are many vehicles present

in the areas and they need to be localized at sufficiently high

accuracy. Due to the large number of vehicles packed in a

small area, the vehicles may have many connections with

either infrastructure and/or other vehicles. The integrated

algorithm uses all connections to estimate the vehicle’s

location. However, sometimes the vehicle has many con-

nections and not all of them are necessarily useful. These

connections slow down the estimation process and do not

provide significant improvement. Therefore, an algorithm

(the so called Smart algorithm) is proposed which only

utilizes the most beneficial connections in estimating the

vehicles’ locations. The proposed Smart algorithm filters out

the redundant connections and keeps only those connections

that provide the desired accuracy. The proposed algorithms

are developed and simulated in MATLAB. A transportation

network scenario which includes several different situations

is created and the performance of the proposed algorithms

is evaluated through computer simulations.

II. METHODOLOGY

The main idea is to estimate the locations of the vehicles

from a series of range measurements obtained from GPS

satellites, V2I, V2V, and RFID connections. Moreover, the

algorithm is able to use DR to improve the localization

accuracy. Let xk
i = [xk

v,i, y
k
v,i, z

k
v,i]

T be the location of the

ith vehicle at the kth time-step and yk
j = [xk

u,j , y
k
u,j, z

k
u,j ] be

the location of jth unit at the kth time-step. Units refer to

GPS satellites, anchor nodes, or RFID readers. There are N
vehicles and M units in the network. Let Uk

i and Vk
i be sets

of indices of the units (except RFID readers) and vehicles

connected to the ith vehicle at kth time-step, respectively.

Let rkij be the range measurement between the ith vehicle

and the jth unit (except RFID readers) at the kth time-step.

Hence, it can be modeled as [2], [9]

rkij = dkij + nk
ij , j ∈ Uk

i

rkil = dkil + nk
il, l ∈ Vk

i (1)

where dkij , dkil are the true distances, defined as:

dkij =
√

(xk
v,i − xk

u,j)
2 + (ykv,i − yku,j)

2 + (zkv,i − zku,j)
2

dkil =
√

(xk
v,i − xk

v,l)
2 + (ykv,i − ykv,l)

2 + (zkv,i − zkv,l)
2

and nk
ij , nk

il define the measurement noises which are

modeled as Gaussian random variables with variance σ2

ij

[22]. Typically, the lack of perfect synchronization between

the receiver and the GPS satellite [2] is considered by

adding an extra parameter (clock offset) to (1). For the

sake of simplicity, the effect of clock error is neglected

here. However, it does not change the relative performance

of the algorithms. The information obtained from an RFID

reader cannot be modeled as (1). RFID measurements can

be modeled as [23]:

dkij ≤ rkij , j ∈ Dk
i (2)

where Dk
i is the set of indices of the RFID readers connected

to the ith vehicle. rkij for RFID readers are defined by their

communication range. To consider DR, an underlying state

model for the movement of the vehicles should be defined.

Let vk
i = [vkx,i, v

k
y,i, v

k
z,i]

T be the velocity of the ith vehicle

at the kth time-step. The relationship between the previous

and current location of the vehicle can be modeled as [24],

[25]:

θ
k
i = Aθ

k−1

i +wk
i (3)

where θ
k
i = [xk

i ,v
k
i ]

T, and

A =

[

I3 ∆I3
03 I3

]

.

wk
i defines the prediction error and is typically modeled as a

Gaussian random variable with variance Qk
w,i. ∆ is the time-

step between two sets of measurements. 03 and I3 denote

the 3× 3 zero and identity matrices, respectively.



Now, the problem in hand is to estimate the location of

the vehicles from noisy range measurements in (1), data

from RFID readers in (2), and underlying state model in

(3). A maximum a posteriori estimation (MAP) algorithm is

used to estimate the locations of the vehicle from the range

measurements and underlying state model [26], while data

from RFID readers can act as a constraint on the estimation

problem [11], [27]. Therefore, the location of ith vehicle at

the kth time step is obtained from the following optimization

problem [11]:

minimize
θk

i

∑

j∈Uk

i

σ−2

ij

(

rkij − dkij
)2

+
∑

l∈Vk

i

σ−2

il

(

rkil − dkil
)2

+
(

θ
k
i − θ̂

k|k−1

i

)T (

P
k|k−1

i

)−1 (

θ
k
i − θ̂

k|k−1

i

)

subject to dkij ≤ rkij , j ∈ Dk
i

θ̂
k|k−1

i = Aθ̂
k−1|k−1

i ,

P
k|k−1

i = AP
k−1|k−1

i AT +Qk
w,i (4)

where θ̂
k−1|k−1

i and P
k−1|k−1

i are the estimate and the

variance of the location and velocity of the vehicle at

the (k − 1)th time-step, respectively. The estimate of the

vehicle location and velocity at the current time-step is the

solution of (4). The details for determining the variance of

the estimate P
k|k
i can be found in [11]. In the problem in

(4) the first, second, and third terms refer to vehicle-unit

measurements, vehicle-vehicle measurements, and internal

prediction, respectively. Moreover, the constraint in (4) refers

to vehicle-RFID connection. The optimization problem in (4)

does not have a closed-form solution. In the simulations, (4)

is solved with the MATLAB routine fmincon. The problem

in (4) can be solved in two ways: distributed and centralized

[28]. In the former, the location of all vehicles is estimated

simultaneously. In the latter, the location of each vehicle is

estimated individually. Therefore in this case, the location of

the desired vehicle is estimated by replacing the unknown

locations of other vehicles with their predicted ones in (4).

Although the centralized technique provides higher accuracy,

its complexity grows exponentially as the number of vehicles

increases. Hence, the distributed technique is employed here.

A. Smart Algorithm

Generally speaking, the more connections the vehicle has,

the higher the accuracy of the localization will be. On the

other hand, as the number of connections increases, the

complexity of the algorithm intensifies. In the problem in (4),

the vehicle is using all connections to estimate its location.

However, sometimes the vehicle has many connections and

not all of them are necessarily useful. These connections

slow down the estimation process and do not provide

significant improvement. This situation happens frequently

in dense environments where a large number of vehicles

are packed in a small area. In this case, a vehicle using

V2V communications would have many connections to the

other neighboring vehicles, most of them are not useful

though. The Smart algorithm described here filters out the

redundant connections and keeps only those connections that

provide the desired accuracy. The proposed Smart algorithm

processes the available connections and reports the useful

ones to the Integrated algorithm in (4).

To evaluate whether a set of connections provide the

desired accuracy or not the CramérRao lower bound (CRLB)

is used. The CRLB expresses a lower bound on the variance

of any unbiased estimator [26]. The CRLB is used as a

benchmark to evaluate the performance of unbiased estima-

tors. In other words, it tells us how accurate the estimator

is and how far its performance is from the lower bound.

The CRLB of the unknown variables to be estimated is

obtained from diagonal elements of the inverse of the Fisher

information matrix [26]:

CRLB([xk
i ]m) = [I(xk

i )
−1]mm, m = 1, 2, 3. (5)

The detail for calculating the Fisher information matrix

(FIM) is provided in [11]. The CRLB of the location of

the desired vehicle depends on the locations of the satellites,

anchor nodes, and other vehicles connected to that vehicle

and the variance of the measurements. Since the locations of

other vehicles are unknown, the desired vehicle predicts their

locations based on the state model to calculate the CRLB.

The location of a vehicle consists of three variables (i.e., 3-D

coordinates, x, y, and z) and the overall accuracy is calcu-

lated as
√

Trace{I(xk
i )

−1} [9]. Since RFID connections do

not provide range measurements, they cannot be included

in the CRLB. Therefore, in this case, we assume that the

vehicle only uses GPS, V2V, and V2I connections.

The proposed Smart algorithm is provided in Algorithm I.

Ak
i = Uk

i ∪ Vk
i is the set of all available connections at

the kth time-step and Ck
i be the set of connections selected

by the Smart algorithm (Ck
i ⊆ Ak

i ). Suppose at the kth time

step, Ck−1

i is available. In line 1, the algorithm calculates the

intersection of the set of connections obtained from the Smart

algorithm at the k − 1th time step and the set of available

connections at the kth time step. In line 2, the algorithm

calculates the Fisher information matrix using the set Ĉk
i . In

line 3, the difference between the desired accuracy, ǫ, and

the predicted accuracy
√

Trace{I−1} is calculated. In line 4,

If the predicted accuracy is better than required accuracy,

δ < −0.15ǫ, the algorithm needs to remove a connection,

because the Smart algorithm anticipates that the selected

set Ĉk
i can provide better accuracy than the desired one.

However, the algorithm needs to determine which connection

should be removed from the set. Intuitively, it is better to

select the connection whose removal has the least impact on

the predicted accuracy. One way to calculate the effect of

removing or adding a connection on the predicted accuracy

is to calculate the CRLB for the new set of connections

from scratch. It typically takes a lot of processing time,

especially when the number of connections is high. However,

the Smart algorithm is only useful when the running time

of the connection selection process plus location estimation

based on those connections is less than that of the fully-

Integrated algorithm using all connections. Therefore, instead



Algorithm I. Smart Localization Algorithm

1. Ĉk
i
← Ck−1

i
∩ Ak

i

2. I← Fisher(Ĉk
i
)

3. δ ←
√
I−1 − ǫ

4. if δ < −0.15ǫ then

5. remove the worst connection, j, from the set, Ck
i
= Ĉk

i
− j

6. elseif δ > 0.15ǫ then

7. add the best connection, j, to the set, Ck
i
= Ĉk

i
∪ j

8. else

9. do not change the set, Ck
i
= Ĉk

i

10. end if

of calculating the CRLB of the new set, the following

approximation is used [29]:

(I+ ǫZ)−1 ≈ I−1 − ǫI−1ZI−1 (6)

where Z is the FIM of the connection to be removed. Since

matrix inversion is a complex process for large matrices,

the impact of a new connection can be simply calculated

by using above approximation (I−1ZI−1) which can be

determined significantly faster than calculating and inverting

a new FIM. Therefore, adding or removing the considered

connection changes the CRLB by I−1ZI−1. In this case, the

algorithm needs to remove a connection which has the least

effect on the accuracy. Therefore, a connection which has the

lowest value of Trace{I−1ZI−1} is removed from the set.

In line 6, if the predicted accuracy is worse than the

required accuracy, δ > 0.15ǫ, the algorithm needs to add

a connection to the set to compensate the lack of suffi-

cient accuracy. Similar to the previous case, selection of a

connection is performed based on the CRLB. However, in

this case, a connection which delivers the highest accuracy

improvement should be selected. Again, the algorithm starts

calculating I−1ZI−1 for all available connections and selects

the one that has the highest value of Trace{I−1ZI−1}. In

line 8, if the predicted accuracy falls between (0.85ǫ, 1.15ǫ),
the algorithm proceeds without any changes. Note that a

15% tolerance is considered to prevent the algorithm from

unnecessary processing. The user can change the tolerance

depending on application requirements. Additional details

about the proposed Smart algorithm can be found in [11].

The practicality of the proposed positioning system is

dependent on two important components. First, a sufficient

number of sensors or other resources should be installed

along the roads to cover the areas that GPS fails. Although

such resources are not available immediately, new tech-

nologies and advancements make it possible in near future.

Second, since each positioning system works based on its

own requirements and specifications (e.g., ranging technique,

input and output information, and accuracy), a data fusion

center is also required to make data homogeneous and send

it to the algorithm.

III. SIMULATION RESULTS

In this section, the performance of the proposed algorithms

is evaluated through computer simulations. The proposed

transportation network and the traveling path of the desired

vehicle are depicted in Fig. 1a. Different conditions are

included in the simulated network. Several infrastructure and

RFID readers are considered around the road. There are

also 15 other vehicles in the network. The desired vehicle

experiences five different environments through its travel. In

the clear view areas, such as along a highway, there are no

objects surrounding the road and the vehicle is connected to

several GPS satellites. In the commercial areas, the road is

surrounded by tall buildings and skyscrapers. The GPS re-

ception in this area is weak. However, buildings are equipped

with several anchor nodes and RFID readers which can help

the vehicle find its location more accurately. The vehicle can

also utilize V2V communications with surrounding vehicles.

In residential areas, the condition is almost similar to the

previous area, except GPS reception is more powerful in

this area as the buildings are typically shorter. In the highly-

dense areas, such as forest, the GPS reception is very weak.

However, the road is equipped with several anchor nodes

and RFID readers. In the indoor areas, such as tunnel and

parking garage, no GPS reception is available.

In the simulations, the true locations of the GPS satellites

have been used. The Cartesian locations of the satellites are

extracted from the ephemeris data using MATLAB script

EASY17 [30]. The recent ephemeris information of the

current 31 satellites is obtained from the National Geodetic

Survey database. The reader is referred to [31] for more de-

tails about the simulation of the GPS satellites. The accuracy

of the GPS range measurements is dependent on several

parameters such as ionospheric effects, ephemeris errors,

satellite clock errors, multipath distortion, and tropospheric

effects [2]. As suggested in [31], experimental results show

that the average error on the measurements of a GPS receiver

depends on the elevation of the satellite and the environment

where the receiver is located. The accuracy of the range

measurement in V2I and V2P depends on the method of

ranging [9]. In this work, time of arrival-based ranging

method was considered whose accuracy depends on the

received signal-to-noise ratio (SNR) and signal bandwidth

[10]. SNR itself is dependent on the several parameters such

as transmit power, environment, and receiver hardware. An-

other parameter that should be considered for V2I and V2V

connections is the communication range. In TOA ranging,

once SNR falls below a certain level, the signal cannot be

detected by the receiver. The communication range is, in

fact, the distance at which the signal power is so low that the

receiver cannot detect it. No range measurement is performed

among RFID components (readers and tags). Therefore,

no measurement error is considered for RFID networks.

However, the communication range of RFID readers would

be different depending on the environment where they are

located. The reader is referred to [11] for more details about

simulation parameters.

A. Integrated Algorithm

In this section, the performance of the Integrated algorithm

is evaluated. Fig. 1 shows the simulation results of the Inte-

grated algorithm. The localization error as a function of the

time-step for these cases is depicted in Fig. 1b. Fig. 1c shows

the cumulative distribution function (CDF) of the localization



(a) The plot of the proposed transportation network.

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
0

5

10

15

20

25

Time Step

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r 
[m

]

 

 

Integrated

GPS+V2I

GPS+V2V

GPS+RFID

GPS

Clear Dense Highly−Dense ParkingSemi−Dense Tunnel Clear

Using GPS leads to large errors
in indoor environments

RFID is more useful than
V2V in indoor environments
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Fig. 1. Simulation results of the Integrated algorithm.

TABLE I

THE POSITIONING PERFORMANCE OF THE CONSIDERED ALGORITHMS.

Algorithm Integrated GPS+V2I GPS+RFID GPS+V2V GPS Integrated w/o DR GPS w/o DR

RMSE [m] 2.94 4.45 5.62 14.08 17.18 4.70 23.06
80% CDF [m] 3.37 4.78 6.99 7.82 9.20 5.08 12.55



error for different cases. The performance of GPS is almost

satisfactory in all regions except for indoor (i.e., tunnel and

parking) and very dense (i.e., forest) environments. On the

other hand, the estimated location of the vehicle using the

Integrated algorithm provides remarkable performance in all

regions, especially in highly dense and indoor environments

where GPS reception is very weak. The reason is that the

integrated positioning exploits other resources which enhance

the positioning accuracy. As depicted in the GPS+RFID

curve, RFID technology can improve the location perfor-

mance, especially when the vehicle is inside the tunnel and

parking garage. However, in other regions where the GPS

reception is sufficient, RFID technology cannot help the

algorithm in terms of accuracy. The behavior of GPS+V2V

is almost opposite to GPS+RFID. In other words, V2V

technology can slightly help the vehicle in the clear view,

commercial and residential regions because it provides the

vehicle with more useful connections. However, V2V cannot

improve the performance in indoor regions considerably,

because in indoor environments V2V technology uses other

vehicles information which are also inside the tunnel (or

parking garage) and do not have enough connections due

to GPS outage and their location information is not as

reliable as other resources such as RFID and V2I. Among

GPS-aided techniques (RFID, V2V, and V2I), V2I provides

considerably better accuracy. The reason is that unlike RFID,

V2I is associated with the range measurement which is more

useful than presence detection for localization. V2I also has

more valuable information than V2V because the source

of information in V2I is an infrastructure with a fixed and

known location, while the source of information in V2V is

another vehicle whose location is not accurate.

In all previous cases, the algorithms use the internal DR.

Evaluating the effect of the internal DR sensor, Fig. 1d

shows that using DR is highly beneficial for both Integrated

positioning and GPS positioning. However, DR is not useful

for GPS positioning when the vehicle is in indoor environ-

ments. In DR technique, the previous estimate is used to

predict the future vehicles locations. If no measurement is

available and if the vehicle changes its velocity frequently,

the prediction and the true location of the vehicle get farther

and farther apart which generates significantly large errors.

Therefore, using DR without having extra measurements

does not necessarily lead to performance improvement. This

conclusion is also clearly demonstrated in Fig. 1b where DR

is not useful anymore when the vehicle enters the tunnel and

parking garage, as DR predicts the wrong direction for the

vehicle in the absence of measurements.

In Table I, the performance of the considered algorithms

is summarized in terms of root-mean-square error (RMSE)

and 80% CDF. RMSE represents the difference between the

estimated location and the true one on average [11]. As can

be seen, the RMSE of the GPS is about 17 m, although

its localization error is less than 9.2 m about 80% of the

time. The reason is that the bad performance of GPS which

happens only 20% of the time has a great impact on the

average error represented by RMSE.
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Fig. 2. The simulated network for the Smart algorithm.
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B. Smart Algorithm

The performance of the proposed Smart algorithm is evalu-

ated in this section. Fig. 2 features a network with 70 vehicles

and 8 anchor nodes. The red circles and black squares rep-

resent the vehicles and infrastructure, respectively. Vehicles

have access to GPS, V2V, and V2I connections. However,

due to tall buildings and skyscrapers in the area, GPS

reception is very week. The avarage number of satellites

connected to the each vehicle is limited to 6 which is typical

in dense environments. The satellites are selected randomly

and based on their elevations [31]. The accuracy, ǫ, is set to

7m for the Smart algorithm.

Fig. 3 shows the CDF of the localization error for the

Smart algorithm. The performance of standalone GPS is not

satisfactory, mainly because of tall buildings blocking the

line-of-sight view of the satellites. About 20% of the time,

GPS fails to operate, as vehicles are not connected to a suffi-

cient number of satellites. The Integrated algorithm performs

significantly better than GPS, since vehicles have access to

the other resources including V2V and V2I. However, the

Integrated algorithm requires higher computations than the

GPS. The average number of connections for the Integrated

algorithm and GPS are 25 and 6, respectively. The Smart al-



gorithm performs almost as good as the Integrated algorithm

and significantly better than standalone GPS. However, the

average number of connections for the Smart algorithm is

only 5. The computational complexity of the optimization

problem in (4) is difficult to determine due to its nonlinear

behavior. It has been shown in [32] that the complexity

of such problems is proportional to O(m3), where m is

the number of measurements. Therefore, the complexity of

the Smart algorithm is expected to be (5/25)3 = 0.8% of

that of the Integrated algorithm. As can be seen, the Smart

algorithm is able to decrease the complexity significantly

without affecting the performance.

IV. CONCLUSIONS

In this paper, Integrated and Smart positioning algorithms

were proposed for ITS. Location information plays an impor-

tant role in many ITS applications. The locations of vehicles

in a network needs to be available under any atmospheric and

geographic environment. Conventional vehicle positioning

technologies mostly rely on GPS which does not work

properly in all conditions. Taking advantage of multiple

technologies such as V2I, V2V, RFID, and DR, an Integrated

algorithm was proposed. A close-to-real-world scenario was

developed and simulated to evaluate the performance of the

proposed algorithm under different conditions. For the Inte-

grated algorithm scenario, GPS failed to provide reasonable

accuracy in about 15% of the situations, especially when

the vehicle was in indoors (e.g., parking garages) or in

highly-dense areas. The proposed fully Integrated algorithm

provided significantly better performance in indoor areas

and more than 50% improvement in other areas. Among

considered technologies (V2I, V2V, and RFID) incorporated

with GPS, V2I was most helpful. Comparing GPS+V2V

and GPS+RFID positioning, the former and the latter add

more improvement to stand-alone GPS accuracy in clear

and indoor environments, respectively. In addition, a Smart

algorithm was introduced to wisely choose useful links yet

provide the desired accuracy in dense areas. The Smart algo-

rithm was able to perform nearly as good as the Integrated

algorithm with considerably lower complexity.
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