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Abstract—Jamming attacks can significantly impact the per-
formance of wireless communication systems, and can lead to
significant overhead in terms of re-transmissions and increased
power consumption. This paper considers the problem of optimal
jamming over an additive white Gaussian noise channel. We
derive the optimal jamming signal for various digital amplitude-
phase modulated constellations. We show that it is not always
optimal to match the jammer’s signal to the victim signal in
order to maximize the error probability at the victim receiver.
Connections between the optimum jammer obtained in this
analysis and the well-known pulsed jammer, popularly analyzed
in the context of spread spectrum communication systems are
illustrated. Further, we evaluate the value of the knowledge of
the victim’s modulation schemes by comparing the performance
of the optimal jamming signals with conventional additive white
Gaussian noise jamming. Numerical results are presented in
order to validate the theoretical inferences presented.

I. INTRODUCTION

Jamming has traditionally been studied in the context of
spread spectrum communications [1]. Barrage noise jamming,
partial-band/narrow-band jamming and pulsed jamming are
the most common jamming techniques considered in wireless
communication systems. Most of the earlier literature that
considered physical layer jamming attacks assumed either tone
jamming (a victim is attacked by sending either a single
or multiple jamming tones) [2] or additive white Gaussian
noise (AWGN) jamming (partial band or broadband jamming)
[2], [3]. The convexity properties of error probability with
respect to the AWGN jamming signal power against a binary-
valued victim signal were considered in [4]. An information
theoretic study of jamming was considered in [3], [5]. In [3],
independent Gaussian input and noise (which is the jamming
signal) signals were shown to be a saddle point solution
for the mutual information game between the victim and
the jammer. In [5], the capacity of a wireless channel was
analyzed in the presence of correlated jamming. Although
various aspects of AWGN jamming have been considered
under different scenarios, the question of optimal jamming
against digital amplitude-phase modulated constellations is not
yet fully answered.

Deviating from AWGN or tone jamming, we ask in this
paper “What is the optimum statistical distribution for power
constrained jamming signals in order to maximize the error
probability of digital amplitude-phase modulated constella-
tions?” The motivation for this work comes from a similar
question raised in the past -“What is the worst case power

constrained noise distribution for binary-input channels?” [6].
In [6], the worst case performance, in terms of maximizing the
error probability and/or minimizing the capacity, achieved by
any noise distribution was investigated when binary data was
transmitted. The results presented in this paper are different
from the results discussed in [6] in terms of 1) the system
model and 2) the obtained worst case jamming signal distribu-
tion. In [6], the worst case noise distribution was shown to be a
shifted version of the input signal distribution by ignoring the
presence of AWGN noise introduced by the wireless channel.
These results do not hold true for the scenarios considered
in this paper mainly because we also consider the effects of
AWGN noise in our system model formulation.

It is assumed that the victim receiver is not operating in an
anti-jamming mode, i.e., the decision regions for the victim
receiver remain the same irrespective of the presence or ab-
sence of a jamming signal. For instance, the decision boundary
for a symmetric binary signaling scheme (signal levels given
by ±A where A is the amplitude of signaling) will be taken
to be 0 (irrespective of the presence or absence of jamming).
Such jamming scenarios can occur when the jammer intends
to disrupt communication between the transmitter and the
victim receiver while the receiver is unaware of the presence
of a jammer. Improved jamming techniques, such as the ones
proposed in this paper, help military and/or practical wireless
communication systems jam their adversaries’ received signal
before they can interpret any sensitive information.

The jammer is aware of the modulation scheme of the
communication signal and also the power levels of the commu-
nication and the jamming signals at the victim receiver (using
power control information, location and/or path loss calcula-
tions). These assumptions enable to analyze the worst case
jamming performance against standard modulation schemes.
We first show that the optimal power-constrained jamming
signal shares time only between two signal levels i.e., a
binary distribution, along any signaling dimension (in-phase
and quadrature). Further, it will be shown that the jammer
assumes the statistical distribution of well-known modulation
schemes under special conditions, and is not always matched
to the victim signal. These results are then extended to the
more practical non-coherent scenario where there is a phase
mismatch between the jammers’ signal and the victim signal.

The rest of this paper is organized as follows. The system
model and the structure of the optimal jamming signal distri-



bution that maximizes the error probability are introduced in
Section II. The optimal jamming signal distribution when the
victim and the jammers’ signals are phase aligned is derived in
Section III. In Section IV, the jammers’ statistical distribution
is derived for the case when there is a random unknown phase
offset between the victim and the jamming signals. Finally
conclusions are drawn in Section V.

II. SYSTEM MODEL AND OPTIMUM JAMMING SIGNAL
DISTRIBUTION

We assume that the data conveyed in the legitimate com-
munication signal is mapped onto a known digital amplitude-
phase constellation. The low pass equivalent of the transmitted
signal is represented as s(t) =

∑∞
m=−∞

√
PSsmg(t −mT ),

where PS is the average received signal power, g(t) is the real
valued pulse shape and T is the symbol interval. The random
variables sm denote the modulated symbols, distributed as
fS(s) and are assumed to be uniformly distributed among all
possible constellation points. Without loss of generality, the
average energy of g(t) and modulated symbols E(|sm|2) are
normalized to unity.

It is assumed that the transmitted signal passes through
an AWGN channel (received power is constant over the
observation interval) while being attacked by a jamming signal
represented as j(t) =

∑∞
m=−∞

√
PJjmg(t−mT ), where PJ

is the average jamming signal power as seen at the victim
receiver and jm denote the jamming signals that are distributed
as fJ(j) with E(|jm|2) ≤ 1. Assuming a coherent receiver
and perfect synchronization, the received signal after matched
filtering and sampling at the symbol intervals is given by

yk = y(t = kT ) =
√
PSsk +

√
PJjk + nk, k = 1, 2, .. (1)

where nk is the zero-mean additive white Gaussian noise
whose pdf is denoted by fN (n) and variance by σ2. Let
SNR = PS

σ2 and JNR = PJ

σ2 .

A. Motivation

Consider a BPSK signaling scenario with PS = 1, PJ = 1
and σ2 = 0 (i.e. the channel does not add any noise). If the
jammer were aware of the signals sent by the transmitter,
then it could negate them by sending the opposite of the
transmit signal, i.e., the jammer sends a −1 symbol to destroy
a +1 symbol. However, this is not possible in real time as
the jammer can not demodulate the transmit signal before
transmission occurs. Hence, it sends a random BPSK signal
to disrupt the communication. The receiver can decode the
symbols correctly half of the time i.e., when it gets ±2. For
the other half of the time when it gets 0, it makes a random
guess regarding the transmit signal with probability 1

2 of being
correct. Thus the overall error probability is 1

4 = 0.25. On the
other hand, the error probability is 0.1587 if an AWGN signal
(σ2 = 1) is used as a jamming signal [1]. For this toy example,
the BPSK modulated jammer increased the error probability by
57.5% compared to the AWGN jammer (under similar power
constraints) which suggests that there are interesting avenues
to pursue beyond AWGN jamming.

B. Optimum Jamming Signal Distribution

The average probability of error1 at the victim receiver that
uses a maximum likelihood (ML) detector is given by

pe (j, PS , PJ) =

1−
∫
s

∫
Ω

fN

(
y −

√
PSs−

√
PJj

)
fS(s)dyds, (2)

where y is the received signal, j is the jamming signal, and
Ω indicates the ML decision region for s. For instance, when
the signal levels are ±A, Ω = real (y) < 0 when s = −A and
Ω = real (y) > 0 when s = +A.

The jammer intends to maximize this error probability by
transmitting a sequence of symbols jm which are to be chosen
based on PS and PJ . The optimization problem for such a
jammer can be formulated as

max
fJ

∫
j

pe (j, PS , PJ) fJ(j)dj s.t. E(|j|2) ≤ 1,

, max
fJ

E
(
pe(j, PS , PJ)

)
s.t. E(|j|2) ≤ 1. (3)

Let ȳk = [<yk,=yk]T where <yk indicates the real (in-
phase) part of yk and =yk indicates the imaginary (quadrature)
part of yk. Along similar lines we can define s̄k, j̄k and n̄k
for all k = 1, 2, . . . ,K. Then (1) is rewritten as

ȳk =
√
PS s̄k +

√
PJ j̄k + n̄k, k = 0, 1, . . . ,K. (4)

Since pe(j, PS , PJ) is a continuous function (since nk is
Gaussian, standard pe expressions are defined in terms of the
erfc function which is continuous) defined on the support of
j̄ (which is a compact subset of R2), using Carathéodory’s
theorem [7], [8], it can be shown that the optimal jamming
signal (i.e., the solution for (3)) can be represented as a
randomization between at most two vectors j̄(1) and j̄(2)

(similar optimization problems were considered in [7], [8] and
references therein). Thus the optimal jamming signal pdf is
given by

fJ̄(j̄) = λδ(j̄ − j̄(1)) + (1− λ)δ(j̄ − j̄(2)), λ ∈ [0, 1]

λ|j̄(1)|2 + (1− λ)|j̄(2)|2 ≤ 1, (5)

where λ and (1 − λ) are the probabilities with which the
jammer sends j̄(1) and j̄(2) respectively and δ(j̄) is the Dirac-
delta function. Thus, the problem of finding an optimum
jamming signal distribution is now reduced to finding λ, j̄(1)

and j̄(2) rather than a continuous distribution fJ(j̄). We next
derive the statistics of the optimal jamming signal against
digital amplitude-phase modulated constellations.

III. PERFECT CHANNEL KNOWLEDGE

In this section, we analyze the statistics of the optimal
jammer when it has perfect channel knowledge i.e., phase and
time synchronous with the victim signal. In all the analysis
that follows, it is assumed that the receiver is unaware of the

1With a slight abuse of notation, we use pe to denote the probability of
error. The variables that it depends on are shown within brackets. For example,
pe(PS) indicates that pe is a function of the signal power PS .



pe(λ, |j(1)|, |j(2)|,SNR, JNR) ≈

(
1− 1√

M

)
1

2

{
λ

[
erfc

(
√

SNR
dmin

2
+
√

JNR|j(1)|

)
+erfc

(
√

SNR
dmin

2
−
√

JNR|j(1)|

)]

+ (1− λ)

[
erfc

(
√

SNR
dmin

2
+
√

JNR|j(2)|

)
+erfc

(
√

SNR
dmin

2
−
√

JNR|j(2)|

)]}
(7)

√
2SNRd2

minJNRexp

(
− SNRd2

min

2

)
<
√

1− λopt

{
exp

(
−

(√
SNR

d2
min

2
−

√
JNR

(1− λopt)

)2)

− exp

(
−

(√
SNR

d2
min

2
+

√
JNR

(1− λopt)

)2)}
, (8)

presence of the jammer and hence the decision regions for the
data detection remain the same as if there were no jammer. We
first derive the optimum jamming signal distribution against
a M -QAM victim signal and later show that this can be
simplified for specific modulation schemes.

Since the victim signal and the jammers’ signal are coher-
ent, 2-dimensional modulation schemes such as M -QAM can
be analyzed by considering them as two independent

√
M -

PAM signals along the in-phase and quadrature dimensions
[9]. For the system model in (4), pe of a M -QAM victim
signal along any signaling dimension in an AWGN channel
and with a jamming signal j̄ is given by

pe(j,SNR, JNR) ≈

(
1− 1√

M

)
1

2
×[

erfc

(
√

SNR
dmin

2
+
√

JNRj

)
+erfc

(
√

SNR
dmin

2
−
√

JNRj

)]
,

(6)

where j = <j̄ or =j̄, M is the order of the constellation and
dmin is the minimum distance of the underlying modulation
scheme [9]. It is easy to see that (6) is symmetric in ±j
and hence pe(j,SNR, JNR) = pe(|j|,SNR, JNR). Further
it is not hard to show that pe(|j|,SNR, JNR) is a non-
decreasing function of |j| and hence pe is maximized on the
boundary defined by E(|j|2) = 1/2 (it is 1/2 because we
consider only one signaling dimension). Using the fact that the
optimum jamming signal distribution is given by (5) and that
pe(j,SNR, JNR) = pe(|j|,SNR, JNR), the overall pe along
any signaling dimension is given by (7), where j(i) = <j̄(i)

or =j̄(i) for i = 1, 2.
We will now state 3 theorems that establish the optimal

jamming signal distribution against M -QAM victim signals.
Due to lack of space, we only sketch the proofs of these
theorems.

Theorem 1: QPSK is the optimal jamming signal when the
victim signal uses M -QAM and SNR

d2
min

2 << JNR.
Remark 1: The theoretical pe when QPSK is used as a

jamming signal is given by substituting |j(1)| = |j(2)| = 1√
2

and λ = 1
2 in (7). The slope of the error probability with

respect to SNR i.e., ∂pe
∂SNR within a proportionality constant

when SNR
d2

min

2 << JNR can be approximated as

AWGN:
−1√

SNR× JNR
; QPSK:

−2√
SNR× exp (JNR)

, (9)

which shows that the error probability for a QPSK jammer
decays more slowly with JNR when compared to the AWGN
jammer. Thus from a jammers’ perspective it is advantageous
to use QPSK when compared to traditional AWGN.

Sketch of the proof : Since E(|j|2)= 1
2 , we have λ|j(1)|2 +(1−

λ)|j(2)|2 = 1
2 . Using this relationship, (7) can be written as a

function of |j(1)| denoted by pe(λ, |j(1)|,SNR, JNR). |j(1)| =
{0, 1√

2λ
, 1√

2
} are the solutions to ∂pe(λ,|j(1)|,SNR,JNR)

∂|j(1)| =0.
To prove the optimality of QPSK, we need to show that
pe(λ, |j(1)|,SNR, JNR) is maximized at |j(1)|= 1√

2
(we will

discuss the solutions |j(1)|=0, 1√
2λ

in Theorems 2 and 3).
The second derivative of pe with respect to |j(1)| i.e.,
∂2pe(λ,|j(1)|,SNR,JNR)

∂|j(1)|2 ||j(1)|= 1√
2

has 4 terms each of which can

be shown to be < 0 when SNR
d2

min

2 << JNR. Further, this
holds true irrespective of the value of λ (it can be seen from (7)
that pe is the same irrespective of λ when |j(1)|=|j(2)|= 1√

2
).

However, since the entropy of the binary jamming signal
distribution is maximized when λ = 1

2 [10], we define that the
optimal jamming signal distribution is given by the parameters
λ = 1

2 ,|j(1)|=|j(2)|= 1√
2

, in other words, the optimal jamming
signal is QPSK.

Theorem 2: {|j(1)|, |j(2)|} =

{
0, 1√

2(1−λopt)

}
is

the optimal jamming signal along any signaling di-
mension when ∂pe(λ,|j(1)|,SNR,JNR)

∂|j(1)| ||j(1)|=0 = 0 and
∂2pe(λopt,|j(1)|,SNR,JNR)

∂|j(1)|2 ||j(1)|=0 < 0 where λopt is given by
∂pe(λ,|j(1)|,SNR,JNR)

∂λ ||j(1)|=0 = 0 and (8).

Sketch of the proof : As mentioned earlier, |j(1)|=0 is a
solution for ∂pe(λ,|j(1)|,SNR,JNR)

∂|j(1)| = 0. When this is true, the
optimal value of λ denoted by λopt is obtained by solving



∂pe(λ,|j(1)|,SNR,JNR)
∂λ ||j(1)|=0 = 0. Further, it can be proved that

∂2pe(λopt,|j(1)|,SNR,JNR)

∂|j(1)|2 ||j(1)|=0 will be < 0 only when λopt

satisfies (8). By symmetry,
{

1√
2λopt

, 0
}

is also a solution.

Such a solution is known as on-off keying since the jammer
sends power on only one of the two possible values j(1) or
j(2).

Remark 2: When on-off keying is optimal, it can be shown
that pe is equivalent to the probability of error achieved when
the jammer uses QPSK signaling (i.e., |j(1)| = |j(2)| = 1√

2
)

and either transmits with power PJ

λopt
or shuts off transmission,

with probability λopt and (1−λopt) respectively. Such a jam-
ming signal is equivalent to a pulsed jammer albeit modulated
by a QPSK signal rather than AWGN [1], [2]. Exploiting this
equivalence, we next explicitly characterize the range of SNR
and JNR where on-off keying/pulsed jamming is optimal.

Theorem 3: For a given SNR and JNR, the optimum
strategy for a QPSK modulated jammer is to share time
between two different power levels (one of which is 0) when
JNR ≤ ˆJNR and continuous jamming else where. ˆJNR is
defined by a unique jamming signal power P̂J such that the
tangent to pe at ˆJNR (for a given SNR) passes through the
origin. Such a jamming signal is popularly known as the
pulsed-jammer.
Sketch of the proof : When QPSK is used as the jamming signal
i.e., λ = 1

2 , |j
(1)| = |j(2)| = 1√

2
, it can be shown that for the

pe in (7), there exists a single inflection point JNR∗ such
that pe is convex when JNR ≤ JNR∗ and concave elsewhere.
When pe is convex, the error probability can be increased by
time sharing between two different power levels (by Jensen’s
inequality) [10] under the constraint that the average power is
still PJ . Specifically, there exists a ˆJNR ≥ JNR∗ such that
the tangent to pe (for a given SNR) at ˆJNR passes through the
origin [4, Lemma 2]. Then, the achievable pe when JNR ≤

ˆJNR is given by

λpe

(
1

2
,

1√
2
,SNR,

JNR

λ

)
+(1−λ)pe

(
1

2
,

1√
2
,SNR, 0

)
, (10)

where, the optimal value of λ can be found by using the first
and second derivatives of (10). Since (10) is equivalent to
the pe shown in Theorem 2, it is not hard to see that the
optimal value of λ is given by λopt (discussed in Theorem 2).
When JNR ≥ ˆJNR i.e., the concave region, the achievable pe
is described by pe

(
1
2 ,

1√
2
,SNR, JNR

)
which is indicative of

continuous jamming. This concludes the proof of the theorem.
Numerically solving the optimization problem (finding the

optimal jamming signal) under an average power constraint is
difficult for a general range of SNR and JNR. Similar opti-
mization problems have been solved using global optimization
techniques such as particle swarm optimization in [7]. In this
paper, we use the optimization toolbox in Matlab.

Table I shows the optimal values of the three unknown
parameters against a 16-QAM victim signal for a general case
in which SNR R JNR. Since the in-phase and quadrature
dimensions are equivalent in such a coherent scenario, it is

TABLE I
OPTIMAL JAMMING SIGNAL DISTRIBUTION AGAINST A 16-QAM VICTIM

SIGNAL, JNR = 10 dB.

SNR λopt <j̄(1) <j̄(2) =j̄(1) =j̄(2)

(dB)

-2 0.5 ± 1√
2

± 1√
2

± 1√
2

± 1√
2

4 0.5 ± 1√
2

± 1√
2

± 1√
2

± 1√
2

10 0.5 ± 1√
2

± 1√
2

± 1√
2

± 1√
2

16 0.5 ± 1√
2

± 1√
2

± 1√
2

± 1√
2

19 0.4633 ± 1.039 0 ± 1.039 0
22 0.2304 ±1.473 0 ±1.473 0
25 0.1193 ±2.047 0 ±2.047 0
28 0.0625 ±2.828 0 ±2.828 0

5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR

A
v
e

ra
g

e
 P

ro
b

a
b

ili
ty

 o
f 

S
y
m

b
o

l 
E

rr
o

r

 

 

AWGN Pulse Jamming

Optimal Jamming

AWGN Jamming

16−QAM Modulation Jamming

QPSK Modulation Jamming

Maximum Entropy Jamming

Fig. 1. Comparison of various jamming techniques against a 16-QAM
modulated victim signal, JNR = 10 dB.

seen that the optimal jamming signal is the same along any
signaling dimension as mentioned earlier.

Remark 3: From Table I, it can be seen that QPSK is
the optimal jamming signal only until a certain SNR beyond
which on-off keying (i.e., pulsed jammer with a QPSK distribu-
tion) is optimal. Further, the on-duration for the on-off keying
scheme decreases as the SNR increases, which indicates that
the jammer is turned on only for a short duration. However,
it jams the receiver with increased signal levels in an attempt
to compensate for the increased SNR. Notice that the on-off
keying signal is not a shifted version of the input signal which
is different from the results in [6] because of the effects of the
additional AWGN noise introduced by the channel.

The pe for the 16-QAM victim signal under various jam-
ming scenarios is shown in Fig. 1. Here 16-QAM (QPSK)
jamming refers to a randomly generated 16-QAM (QPSK)
modulated jamming signal, and AWGN jamming refers to a
zero-mean white Gaussian noise jamming signal with variance
PJ . The maximum entropy jammer maximizes the entropy of
the jamming signal at the victim receiver i.e., an additional
constraint λ = 0.5 [10] is imposed on the jamming signal
distribution. While maximum entropy jamming is better than
QPSK jamming, it is worse than the optimal jamming as the
constraint λ = 0.5 does not allow the optimization algorithm



pe(λ, j̄, SNR, JNR)≈

(
1− 1√

M

)
1

2

[
erfc

(
√

SNR
dmin

2
+
√

JNRreal(j̄ exp(iφ))

)
+erfc

(
√

SNR
dmin

2
−
√

JNRreal(j̄ exp(iφ))

)]
(13)

to explore the on-off keying solution. For a fair comparison,
the jamming performance of a pulsed jammer modulated with
an AWGN signal [1] is also shown in Fig. 1.

AWGN-based pulsed jamming converts the exponential
relationship between pe and SNR to a linear one [1]. This
also holds true for the case of the optimal jamming as seen in
Fig. 1. This is similar to the behavior of pe in a Rayleigh fading
channel where it is inversely proportional to SNR. Intuitively,
a symbol erased due to a deep fade is similar to the case where
a symbol is disrupted by jamming. Thus the optimal jammer
is capable of generating a fading channel-like scenario in an
AWGN channel.

In summary, Theorem 1 shows that QPSK is the opti-
mal jamming signal against a M -QAM victim signal when
SNR

d2
min

2 << JNR. In Theorem 2, it is argued that on-off
keying/pulsed jamming is an optimal strategy under certain
conditions and finally Theorem 3 gives the SNR and JNR
ranges where on-off keying is optimal. We used numerical op-
timization techniques to obtain a solution over all SNR, JNR,
based on which it is conjectured that pulsed QPSK is an
optimal signal to jam a M -QAM modulated victim signal.

TABLE II
OPTIMAL JAMMING SIGNALS IN A COHERENT SCENARIO.

Victim signal Pulsed jamming signal
BPSK BPSK
QPSK QPSK
4-PAM BPSK

16-QAM QPSK

Remark 4: Since the two dimensional M -QAM constella-
tions were analyzed by treating them as two orthogonal

√
M -

PAM signals, the above analysis can be directly extended to
one dimensional signaling constellations such as BPSK, 4-
PAM among others. Table II summarizes the optimal jamming
signals against commonly used digital amplitude-phase mod-
ulated constellations. These results indicate that matching the
jamming signal to the victim signal is not always optimal.

IV. NON-COHERENT JAMMING

In this section, jamming behavior is studied when the jam-
mers’ signal is not coherent (i.e., phase asynchronous) with the
victim signal. From a jammers’ perspective, the non-idealities
in the channel, specifically differences between the victim and
jamming signals will lower the impact of jamming at the
victim receiver. For example, consider a scenario where the
victim and the jammer use BPSK modulation. If the channel
introduces a 90◦ phase offset between these two signals, then
the jammers’ signal does not have any impact on the victim

signal (as the receiver only demodulates the projections of the
signal received along the in-phase dimension). If the phase
shift is known ahead of time to the jammer, it can compensate
for this in the jamming signal before it is sent. This is however
difficult to achieve in a real time communication system.
Hence, we consider a scenario where the jammer is unaware
of (or unable to compensate for) this random phase offset
introduced by the wireless channel and thus treats it as a
random variable.

With a random phase offset, the victim signal is given by

ȳk =
√
PS s̄k +

√
PJexp (iφ) j̄k + n̄k, k = 0, 1, . . . ,K, (11)

where φ indicates the phase offset between the victim signal
and the jamming signal at the victim receiver and is treated as
a uniform random variable between 0 and 2π, and i =

√
−1.

As in Section III, the jammer maximizes pe at the receiver
and the optimization problem is given by

max
fJ̄

EfJ̄

[
Eφ

(
pe (j̄, PS , PJ)

)]
s.t. E(|j̄|2) ≤ 1. (12)

Following the analysis in Section II, the optimal jamming
signal distribution i.e., the solution to (12) is again described
by (5).

Even in the non-coherent case, the M -QAM signal can
be analyzed by considering it as two orthogonal

√
M -PAM

signals. However, in this case due to the random phase offset
between the jammers’ signal and the victim signal, projections
of the jammers’ signal along each signaling dimension must be
considered which is different from the analysis in Section III.
The pe of a M -QAM signal along the in-phase dimension
when there is a jamming signal j̄ and a random phase offset
φ, is given by (13) (a similar expression holds true for the
quadrature signaling dimension). In (13), real(j̄ exp(iφ)) =
<j̄ cos(φ)−=j̄ sin(φ).

Using (13) and solving the optimization problem in (12)
along with (5), gives the optimal jamming signal distribution
shown in Table III when M = 16 i.e., against a 16-QAM
victim signal. It is interesting to see that once again QPSK is
the optimal jamming signal until a certain SNR. Beyond this
limit, on-off keying is optimal. This behavior is similar to the
observations in Section III. Since on-off keying is optimal, the
non-zero signal level is given by its corresponding probability
as ±1√

2λopt

or ±1√
2(1−λopt)

. Notice that the optimization solver

returned equal values for the jamming signal levels along the
in-phase and quadrature dimensions (in Table III). This is due
to the symmetry present along these dimensions in the case of
2-dimensional signaling (in-phase and quadrature are equally
important to evaluate pe).

Similar to the coherent scenario (see Theorem 3), the



TABLE III
OPTIMAL NONCOHERENT JAMMING SIGNAL AGAINST A 16-QAM

VICTIM SIGNAL, JNR = 10 dB.

SNR λopt <j̄(1) <j̄(2) =j̄(1) =j̄(2)

(dB)

-2 0.5 ± 1√
2

± 1√
2

± 1√
2

± 1√
2

4 0.5 ± 1√
2

± 1√
2

± 1√
2

± 1√
2

10 0.5 ± 1√
2

± 1√
2

± 1√
2

± 1√
2

16 0.5 ± 1√
2

± 1√
2

± 1√
2

± 1√
2

19 0.5 ± 1√
2

± 1√
2

± 1√
2

± 1√
2

22 0.185 ±1.642 0 ±1.642 0
25 0.094 ±2.304 0 ±2.304 0
28 0.049 ±3.211 0 ±3.211 0
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Fig. 2. Comparison of jamming techniques against a 16-QAM victim signal
in a non-coherent (random phase offset) scenario, JNR = 10 dB.

equivalence between on-off keying and pulsed-QPSK holds
true even in this case. The jammer uses pulsing/on-off keying
when JNR ≥ ˆJNR where ˆJNR is defined in Section III. The
performance of the various jamming signals against a 16-QAM
victim signal is shown in Fig. 2. Although the pe achieved by
the optimal jamming signal (or pulsed-QPSK) is less compared
to the coherent scenario (due to phase mismatch), it is still
higher than the pe achieved using pulsed-AWGN jamming.

Similar to the coherent scenario, the analysis for the M -
QAM constellations can be extended to any specific modula-
tion scheme in a non-coherent scenario. The optimal jamming
signals in such a phase asynchronous scenario against the
commonly used modulation schemes such as BPSK, 4-PAM,
QPSK and 16-QAM are still given by Table II. However, the
pulsed jamming duration (on-off keying duration) of these
optimal jamming signals changes between the coherent and
non-coherent (phase asynchronous) scenarios as seen from
Tables I and III. Also, the gain in the SNR required to achieve
a target pe when compared to the coherent scenario, decreases
by 1-2 dB due to this phase mismatch.

V. CONCLUSION

In this paper, we characterized the optimal statistical dis-
tribution for power constrained jamming signals that jam

digital amplitude-phase modulated constellations in an AWGN
channel. The analysis in this paper shows that modulation-
based pulsed jamming signals are optimal in both coherent
and non-coherent (phase asynchronous) scenarios. As opposed
to the common belief that matching the victim signal (cor-
related jamming) increases confusion at the victim receiver,
our analysis shows that the optimal jamming signals match
standard modulation formats only in a certain range of signal
and jamming powers. Beyond this range, on-off keying is an
optimal statistical distribution for the jamming signals. An
interesting relationship between these optimal jamming signals
and the well-known pulse jamming signals discussed in the
context of spread spectrum communications was illustrated. As
expected, the performance of these optimal jamming signals
was seen to be degraded when the victim and the jamming
signals are not phase synchronous.

These modulation-based jamming techniques can be ex-
tended to any higher order modulation schemes by following
the analysis shown in this paper. The structure of the optimal
jamming signals also suggests that modulation classification
techniques only need to identify the class of the modulation
scheme such as PAM or QAM in order to devise an optimal
jamming strategy. This significantly reduces the computational
complexity involved in sophisticated modulation classification
algorithms proposed in the literature. Investigating optimal
jamming signals 1) in the presence of intelligent receivers, 2)
in scenarios where the jammer is not aware of the power levels
of the victim and the jamming signals at the victim receiver,
and 3) when the jamming and the victim signals are not time
aligned, or when there is a symbol rate/interval mismatch is
part of our ongoing work. Further, examining optimal jamming
signal distributions for fading channels, OFDM-based and
MIMO-based wireless systems are interesting directions that
arise from the analysis done in this work.
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